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Introduction ChatGPT
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Introduction ChatGPT

What is ChatGPT?

A pre-trainined autoregressive language model with a convenient interface,
trained to align with user goals and intents
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Language Models Guessing game

Can you guess how a given text continues?

C Shannon, Prediction and Entropy of written English (1951)
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Language Models Probabilistic LMs

Probabilistic language models

Goal: compute the probability of a sentence or sequence of words:

P(W ) = P(w1,w2,w3,w4,w5, ...,wn)

Related task: probability of an upcoming word:

P(w5|w1,w2,w3,w4)

A model that computes P(W ) or P(w5|w1,w2,w3,w4) is called a
language model

Probabilities obtained by counting
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Language Models Probabilistic LMs

Probability estimation by counting

P(the|its water is so transparent that) =

Count(its water is so transparent that the)

Count(its water is so transparent that)

Unigram/bigram/.../ngram language models

However...

Too many possible sentences

We’ll never see enough data for estimating these
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Language Models Neural LMs

Neural language models (FNN)
148 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS
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Figure 7.13 Forward inference in a feedforward neural language model. At each timestep
t the network computes a d-dimensional embedding for each context word (by multiplying a
one-hot vector by the embedding matrix E), and concatenates the 3 resulting embeddings to
get the embedding layer e. The embedding vector e is multiplied by a weight matrix W and
then an activation function is applied element-wise to produce the hidden layer h, which is
then multiplied by another weight matrix U. Finally, a softmax output layer predicts at each
node i the probability that the next word wt will be vocabulary word Vi.

In summary, the equations for a neural language model with a window size of 3,
given one-hot input vectors for each input context word, are:

e = [Ext�3;Ext�2;Ext�1]

h = s(We+b)

z = Uh

ŷ = softmax(z) (7.24)

Note that we formed the embedding layer e by concatenating the 3 embeddings
for the three context vectors; we’ll often use semicolons to mean concatenation of
vectors.

In the next section we’ll introduce a general algorithm for training neural net-
works, and then return to how to specifically train the neural language model in
Section 7.7.

7.6 Training Neural Nets

A feedforward neural net is an instance of supervised machine learning in which we
know the correct output y for each observation x. What the system produces, via
Eq. 7.13, is ŷ, the system’s estimate of the true y. The goal of the training procedure
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Language Models Neural LMs

Neural language models (RNN)
9.4 • RNNS FOR OTHER NLP TASKS 191
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Figure 9.6 Training RNNs as language models.

predict the next word (rather than feeding the model its best case from the previous
time step) is called teacher forcing.teacher forcing

The weights in the network are adjusted to minimize the average CE loss over
the training sequence via gradient descent. Fig. 9.6 illustrates this training regimen.

Careful readers may have noticed that the input embedding matrix E and the final
layer matrix V, which feeds the output softmax, are quite similar. The columns of E
represent the word embeddings for each word in the vocabulary learned during the
training process with the goal that words that have similar meaning and function will
have similar embeddings. And, since the length of these embeddings corresponds to
the size of the hidden layer dh, the shape of the embedding matrix E is dh⇥|V |.

The final layer matrix V provides a way to score the likelihood of each word in
the vocabulary given the evidence present in the final hidden layer of the network
through the calculation of Vh. This results in a dimensionality |V |⇥dh. That is, the
rows of V provide a second set of learned word embeddings that capture relevant
aspects of word meaning and function. This leads to an obvious question – is it
even necessary to have both? Weight tying is a method that dispenses with thisWeight tying

redundancy and simply uses a single set of embeddings at the input and softmax
layers. That is, we dispense with V and use E in both the start and end of the
computation.

et = Ext (9.14)

ht = g(Uht�1 +Wet) (9.15)

yt = softmax(Eintercalht) (9.16)

In addition to providing improved model perplexity, this approach significantly re-
duces the number of parameters required for the model.

9.4 RNNs for other NLP tasks

Now that we’ve seen the basic RNN architecture, let’s consider how to apply it to
three types of NLP tasks: sequence classification tasks like sentiment analysis and
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Language Models Neural LMs

Attention

9.7 • SELF-ATTENTION NETWORKS: TRANSFORMERS 201

independent of all the other computations. The first point ensures that we can use
this approach to create language models and use them for autoregressive generation,
and the second point means that we can easily parallelize both forward inference
and training of such models.

Self-Attention
Layer

x1

y1

x2

y2 y3 y4 y5

x3 x4 x5

Figure 9.15 Information flow in a causal (or masked) self-attention model. In processing
each element of the sequence, the model attends to all the inputs up to, and including, the
current one. Unlike RNNs, the computations at each time step are independent of all the
other steps and therefore can be performed in parallel.

At the core of an attention-based approach is the ability to compare an item of
interest to a collection of other items in a way that reveals their relevance in the
current context. In the case of self-attention, the set of comparisons are to other
elements within a given sequence. The result of these comparisons is then used to
compute an output for the current input. For example, returning to Fig. 9.15, the
computation of y3 is based on a set of comparisons between the input x3 and its
preceding elements x1 and x2, and to x3 itself. The simplest form of comparison
between elements in a self-attention layer is a dot product. Let’s refer to the result
of this comparison as a score (we’ll be updating this equation to add attention to the
computation of this score):

score(xi,x j) = xi ·x j (9.30)

The result of a dot product is a scalar value ranging from �• to •, the larger
the value the more similar the vectors that are being compared. Continuing with our
example, the first step in computing y3 would be to compute three scores: x3 · x1,
x3 ·x2 and x3 ·x3. Then to make effective use of these scores, we’ll normalize them
with a softmax to create a vector of weights, ai j, that indicates the proportional
relevance of each input to the input element i that is the current focus of attention.

ai j = softmax(score(xi,x j)) 8 j  i (9.31)

=
exp(score(xi,x j))Pi

k=1 exp(score(xi,xk))
8 j  i (9.32)

Given the proportional scores in a , we then generate an output value yi by taking
the sum of the inputs seen so far, weighted by their respective a value.

yi =
X

ji

ai jx j (9.33)

The steps embodied in Equations 9.30 through 9.33 represent the core of an
attention-based approach: a set of comparisons to relevant items in some context,
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Language Models Neural LMs

Transformers

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3
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Language Models Neural LMs

Neural language models (transformers)

208 CHAPTER 9 • DEEP LEARNING ARCHITECTURES FOR SEQUENCE PROCESSING

positional embeddings is to choose a static function that maps integer inputs to real-
valued vectors in a way that captures the inherent relationships among the positions.
That is, it captures the fact that position 4 in an input is more closely related to
position 5 than it is to position 17. A combination of sine and cosine functions with
differing frequencies was used in the original transformer work. Developing better
position representations is an ongoing research topic.

9.8 Transformers as Language Models

Now that we’ve seen all the major components of transformers, let’s examine how
to deploy them as language models via semi-supervised learning. To do this, we’ll
proceed just as we did with the RNN-based approach: given a training corpus of
plain text we’ll train a model to predict the next word in a sequence using teacher
forcing. Fig. 9.21 illustrates the general approach. At each step, given all the preced-
ing words, the final transformer layer produces an output distribution over the entire
vocabulary. During training, the probability assigned to the correct word is used
to calculate the cross-entropy loss for each item in the sequence. As with RNNs,
the loss for a training sequence is the average cross-entropy loss over the entire se-
quence.

Input
Embeddings

Transformer
Block

Softmax over
Vocabulary

So long and thanks for

long and thanks forNext word all

…

Loss …

…

=

Linear Layer

Figure 9.21 Training a transformer as a language model.

Note the key difference between this figure and the earlier RNN-based version
shown in Fig. 9.6. There the calculation of the outputs and the losses at each step was
inherently serial given the recurrence in the calculation of the hidden states. With
transformers, each training item can be processed in parallel since the output for
each element in the sequence is computed separately. Once trained, we can compute
the perplexity of the resulting model, or autoregressively generate novel text just as
with RNN-based models.
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Word Representation
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Word Representation String manipulation

Meet ChatGPT’s ancestor
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ELIZA A Compute r Program 
For the  S tudy o f Natural Language  
Communication Be twe e n Man 
And Machine  
, J o s E P h  ~VEIZENBA UM 
Massach.usclls  [nshl-ute  qf Tcchnu[ogg,* Cambridge , Mas s . 

ELIZA is a program operating within the MAC time-sharing 
system at MIT which makes certain kinds of natural language 
conversation between man and computer possible. Input sen- 
tences are analyzed on the basis of decomposition rules which 
are triggered by key words appearing in the input text. 
Responses are generated by reassembly rules associated with 
selected decomposition rules. The fundamental technical prob- 
lems with which ELIZA is concerned are: (1) the identification of 
key words, (2) the discovery of minimal context, (3) the choice 
of appropriate transformations, (4) generation of responses in 
the absence of key words, and (5) the provision of an editing 
capability for ELIZA "scripts". A discussion of some psychologi- 
cal issues relevant to the ELIZA approach as well as of future 
developments concludes the paper. 
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q u ite  compre he ns ib le .  Th e  o b s e rve r s a ys  to  h ims e lf "I 
cou ld  h a ve  writte n  th a t".  With  th a t  th o u g h t he  m o ve s  th e  
p ro g ra m  in que s tion  fro m  the  s he lf m~trke d "in te llig e n t",  
to  th a t  re s e rve d  fo r curios , fit to  be  d is cus s e d  o n ly with  
pe op le  le s s  e n ligh te ne d  th a n  he . 

W o r k  re p o r te d  h e re in  wa s  s u p p o r t e d  (iu  p ro t )  b y  P r o je c t  MAC ,  
a n  _\-lIT re s e a rc h  p r o g r a m  s p o n s o r e d  b y  th e  Ad vm ~ c e d  R e s e a r c h  
P r , , je c t s  Ag e t , c y,  l)~ l)a r~me t~t ~,1" l)o fe n s e ,  u n d e r  Office  o f N a v a l 
R e s e a r c h  C o n t r a c t  N u m b e r  No ra ' -4 1 0 2 (0 1 ).  
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p ro g ra m s  e ve r ne e de d  it more . 

ELIZA P ro g ra rn } 
E LIZA is  a  p ro g ra m  which  m a ke s  n a tu rM hmgua ge  

c o n ve rs a tio n  with  a  Colnpute r pos s ible . Its  p re s e n t imple- 
m e n ta tio n  is  o a  the  MAC  time -s ha ring  s ys te m  a t MIT. i: 
It  is  writte n  in 5 lAD-S LIP  [4] for the  IBM 7091. Its  na me  
wa s  chos e n  to  e mpha s ize  th a t it n m y be  incre me nta lly 
im p ro ve d  b y its  us e rs , s ince  its  la ngua ge  a b ilitie s  m a y be 
c o n tin u a lly im p ro ve d  b y a  "te a c h e r".  Like  th e  E liz a  0! 
P yg m a lio n  fa me , it (ran be  ma d e  to  a p p e a r e ve n  more  
c ivilize d , t,he  re la tio n  of a ppe a ra nce  to  re a liW, howe ve r, 
re ma in in g  in ~he  donmin  of th e  p la ywrigh t.  

F o r ll~e  p re s e n t pu rpos e  it is  s uffic ie nt to  cha ra c te rize  
the  ~[A() s ys te m  a s  one  which  p e rm its  a n  in d ivid u a l to 
o p e ra te  a  fu ll s e a le  c o m p u te r from a  re m o te ly loca te d  type - 
write r.  Th e  ind ividua l o p e ra to r ha s  th e  illus ion  tha i, he  is 
the  s ole  ris e r o f the  c o m p u te r comple x, while  in  facl~ othe rs  
m a y be  "tim e -s h a rin g " the  s ys te m  with  h im. Wh a t is 
im p o rta n t h e re  is  th a t the  c o m p u te r ca n  re a d  me s s a ge s  
typ e d  on the  typ e write r a nd  re s pond  b y writing  oil the  
s a me  in s tru m e n t.  % 'h e  time  be twe e n  th e  compu te r's  
re ce ip t of a  me s s a ge  a nd  the  a p p e a ra n c e  o f its  re s pons e  is 
a  fu n c tio n  of th e  p ro g ra m  con tro lling  the  d ia logue  a n d  of 
s uch  MAC  s ys te m  p a rm n e te rs  a s  th e  n u m b e r o f us e rs  
c u rre n tly e on 'e s pond ing  with  the  s ys te m . Th e s e  la tte r 
p a ra m e te rs  g e n e ra lly c o n trib u te  s o little  to  th e  ove ra ll 
re s pons e  tim e  th a t conve rs a tiona l in te ra c tio n  with  the  
c o m p u te r n e e d  n e ve r invo lve  tru ly in to le ra b le  de la ys .  

Wh e n  in conve rs a tion  with  E LIZA,  tile  u s e r typ e s  in 
s ome  s ta te m e n t or s e t of s ta te m e n ts  in  n a tm 'a l la ngua ge  
us ing  n o rm a l pune tua .tion  a n d  s e n te nce  s tru c tu re s .  Only 
th e  q u e s tio n  m a rk m a y no t be  us e d, be ca us e  it is  in te r- 
p re te d  a s  a  line  de le te  c h a ra c te r b y th e  MAC  s ys te m .  The  
us e r's  s ra te m e n t is  te rm in a te d  b y a  doub le  c a rria g e  re tu rn  
which  s e rve s  to  tu rn  e on tro l o ve r to  E LIZA.  E LIZA It he n 
a n a lyz e s  th e  us e r's  s ta te m e n t a nd  g e n e ra te s  s ome  re s pons e  
whie h  it typ e s  out.. C o n tro l is  the n  a ga in  with  the  us e r.  

A ltypie a l c o n ve rs a tio n  is  th e  following: 
Me n  a re  a ll a like .  
IN  W H AT  W AY 
T h e y ' r e  a lwa ys  b u g g in g  u s  a b o u t  s o m e t h in g  o r o t h e r .  
C AN  Y()U T H IN K (H: A S P E C IF IC  E XAMP LE  
We ll,  m y  b o y fr ie n d  m a d e  m e  c o m e  h e re .  
YO U R  B O YF R IE N D  MAI) E  YO U C O ME  H E R E  
tie  s a y s  i ' m  d e p re s s e d  m u c h  o f t h e  t im e .  i: - ( - :  
[ AM S O R R Y T O  H E AR  YO U  AR E  D E P R E S S E D  

% o lu m e  9 / N u m b e r  / / J a n u a r y . ,  1966 

2 . :  
s/(.*)/\U\1/

s/(.*) MY (.*)/YOUR \2/

s/(.*) ME (.*)/\1 YOU \2/

s/.* I’M (DEPRESSED|SAD) .*/I AM SORRY TO HEAR YOU ARE \1/

s/.* I AM (DEPRESSED|SAD) .*/WHY DO YOU THINK YOU ARE \1/

s/.* ALL .*/IN WHAT WAY/

s/.* ALWAYS .*/CAN YOU THINK OF A SPECIFIC EXAMPLE/

J Weizenbaum, ELIZA: a computer program for the study of natural language communication between man and machine,
Communications of the ACM, January 1966
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Word Representation String manipulation

PARRY encounters the DOCTOR (1972)

ELIZA, designed to mimic the speech patterns of a Rogerian
Psychologist at work delivering psychotherapy

PARRY, designed to simulate the thinking patterns of a paranoid
schizophrenic

A short-circuit experiment

Paolo Torroni Natural Language Processing ASAI-ER, Bertinoro, 21/07/23 17 / 64
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Word Representation Beyond syntax

Semantic distance

When are two words related?

LI04CH08-Lenci ARI 3 December 2017 8:54

Vector: a vector v is
an ordered list of real
numbers (v1, . . . , vn);
vi is the ith
component of the
vector

Distributed versus
distributional:
in distributed
representations,
information is
distributed across
vector dimensions;
distributional vectors
are distributed
representations
recording
co-occurrences of
lexemes with linguistic
contexts
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Figure 1
Distributional vectors of the lexemes car, cat, dog, and van.

are vectors corresponding to documents, and each matrix entry records the occurrences of a lexical
item in a document. Since its conception, the vector space model has also been used to identify
semantically associated words by measuring the similarity of their corresponding vectors. While
DS continued to be pursued in information retrieval, it was virtually ignored in computational
linguistics until the early 1990s, because of the dominance of formal and logic methods. The
new empiricist turn and the emergence of statistical NLP, together with the availability of larger
corpora and faster computers, favored a growing interest in DS, which has become a mainstream
research paradigm in computational linguistics.

3. DISTRIBUTIONAL REPRESENTATIONS
The DH states that the semantic similarity of lexical items is a function of their distribution in
linguistic contexts. Distributional representations operationalize this assumption by providing a
mathematical encoding of the distributional properties of lexemes. The distributional represen-
tation of a lexical item is typically a distributional vector representing its co-occurrences with
linguistic contexts—hence the name vector space semantics.

Vectors have geometrical interpretations: Vectors with n components define points (or arrows)
in n-dimensional spaces. Therefore, distributional representations are geometrical representations
of the lexicon in the form of a distributional vector space. The positions of lexemes in a distribu-
tional semantic space depend on their co-occurrences with linguistic contexts. Figure 1 represents
the lexemes car, cat, dog, and van in a three-dimensional vector space (vectors are marked in bold).
Semantic representations are typically couched in symbolic terms and meanings are represented
with symbols of some formal metalanguage (e.g., first-order logic, semantic networks, frames,
feature structures). Symbolic semantic representations are therefore discrete and categorical. Dis-
tributional representations are instead graded and distributed, because information is encoded in
the continuous values of vector dimensions.

3.1. Context Types
Distributional representations differ with respect to the way linguistic contexts are defined
(Table 1). The arguably most common type of context is the set of collocates of a target
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set. Vector semantic models are also extremely practical because they can be learned
automatically from text without any complex labeling or supervision.

As a result of these advantages, vector models of meaning are now the standard
way to represent the meaning of words in NLP. In this chapter we’ll introduce the
two most commonly used models. First is the tf-idf model, often used as a baseline,
in which the meaning of a word is defined by a simple function of the counts of
nearby words. We will see that this method results in very long vectors that are
sparse, i.e. contain mostly zeros (since most words simply never occur in the context
of others).

Then we’ll introduce the word2vec model, one of a family of models that are
ways of constructing short, dense vectors that have useful semantic properties.

We’ll also introduce the cosine, the standard way to use embeddings (vectors)
to compute functions like semantic similarity, the similarity between two words,
two sentences, or two documents, an important tool in practical applications like
question answering, summarization, or automatic essay grading.

6.3 Words and Vectors

Vector or distributional models of meaning are generally based on a co-occurrence
matrix, a way of representing how often words co-occur. This matrix can be con-
structed in various ways; let’s begin by looking at one such co-occurrence matrix, a
term-document matrix.

6.3.1 Vectors and documents
In a term-document matrix, each row represents a word in the vocabulary and eachterm-document

matrix
column represents a document from some collection of documents. Fig. 6.2 shows a
small selection from a term-document matrix showing the occurrence of four words
in four plays by Shakespeare. Each cell in this matrix represents the number of times
a particular word (defined by the row) occurs in a particular document (defined by
the column). Thus fool appeared 58 times in Twelfth Night.

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.2 The term-document matrix for four words in four Shakespeare plays. Each cell
contains the number of times the (row) word occurs in the (column) document.

The term-document matrix of Fig. 6.2 was first defined as part of the vector
space model of information retrieval (Salton, 1971). In this model, a document isvector space

model
represented as a count vector, a column in Fig. 6.3.

To review some basic linear algebra, a vector is, at heart, just a list or arrayvector

of numbers. So As You Like It is represented as the list [1,114,36,20] and Julius
Caesar is represented as the list [7,62,1,2]. A vector space is a collection of vectors,vector space

characterized by their dimension. In the example in Fig. 6.3, the vectors are ofdimension

dimension 4, just so they fit on the page; in real term-document matrices, the vectors
representing each document would have dimensionality |V |, the vocabulary size.

Example: |V | × |D| term-document matrix, part of vector-space
model of information retrieval
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8 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

The ordering of the numbers in a vector space is not arbitrary; each position
indicates a meaningful dimension on which the documents can vary. Thus the first
dimension for both these vectors corresponds to the number of times the word battle
occurs, and we can compare each dimension, noting for example that the vectors for
As You Like It and Twelfth Night have similar values (1 and 0, respectively) for the
first dimension.

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.3 The term-document matrix for four words in four Shakespeare plays. The red
boxes show that each document is represented as a column vector of length four.

We can think of the vector for a document as identifying a point in |V |-dimensional
space; thus the documents in Fig. 6.3 are points in 4-dimensional space. Since 4-
dimensional spaces are hard to draw in textbooks, Fig. 6.4 shows a visualization in
two dimensions; we’ve arbitrarily chosen the dimensions corresponding to the words
battle and fool.
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Julius Caesar [1,7]ba
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Figure 6.4 A spatial visualization of the document vectors for the four Shakespeare play
documents, showing just two of the dimensions, corresponding to the words battle and fool.
The comedies have high values for the fool dimension and low values for the battle dimension.

Term-document matrices were originally defined as a means of finding similar
documents for the task of document information retrieval. Two documents that are
similar will tend to have similar words, and if two documents have similar words
their column vectors will tend to be similar. The vectors for the comedies As You
Like It [1,114,36,20] and Twelfth Night [0,80,58,15] look a lot more like each other
(more fools and wit than battles) than they look like Julius Caesar [7,62,1,2] or
Henry V [13,89,4,3]. This is clear with the raw numbers; in the first dimension
(battle) the comedies have low numbers and the others have high numbers, and we
can see it visually in Fig. 6.4; we’ll see very shortly how to quantify this intuition
more formally.

A real term-document matrix, of course, wouldn’t just have 4 rows and columns,
let alone 2. More generally, the term-document matrix has |V | rows (one for each
word type in the vocabulary) and D columns (one for each document in the collec-
tion); as we’ll see, vocabulary sizes are generally in the tens of thousands, and the
number of documents can be enormous (think about all the pages on the web).

Example: |V | × |D| term-document matrix, part of vector-space
model of information retrieval

A document is a count vector, identifying a point in a V -dimensional
space

For example, if we (arbitrarily) select fool and battle as dimensions, we
can visualize as follows
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The ordering of the numbers in a vector space is not arbitrary; each position
indicates a meaningful dimension on which the documents can vary. Thus the first
dimension for both these vectors corresponds to the number of times the word battle
occurs, and we can compare each dimension, noting for example that the vectors for
As You Like It and Twelfth Night have similar values (1 and 0, respectively) for the
first dimension.

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.3 The term-document matrix for four words in four Shakespeare plays. The red
boxes show that each document is represented as a column vector of length four.

We can think of the vector for a document as identifying a point in |V |-dimensional
space; thus the documents in Fig. 6.3 are points in 4-dimensional space. Since 4-
dimensional spaces are hard to draw in textbooks, Fig. 6.4 shows a visualization in
two dimensions; we’ve arbitrarily chosen the dimensions corresponding to the words
battle and fool.
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Figure 6.4 A spatial visualization of the document vectors for the four Shakespeare play
documents, showing just two of the dimensions, corresponding to the words battle and fool.
The comedies have high values for the fool dimension and low values for the battle dimension.

Term-document matrices were originally defined as a means of finding similar
documents for the task of document information retrieval. Two documents that are
similar will tend to have similar words, and if two documents have similar words
their column vectors will tend to be similar. The vectors for the comedies As You
Like It [1,114,36,20] and Twelfth Night [0,80,58,15] look a lot more like each other
(more fools and wit than battles) than they look like Julius Caesar [7,62,1,2] or
Henry V [13,89,4,3]. This is clear with the raw numbers; in the first dimension
(battle) the comedies have low numbers and the others have high numbers, and we
can see it visually in Fig. 6.4; we’ll see very shortly how to quantify this intuition
more formally.

A real term-document matrix, of course, wouldn’t just have 4 rows and columns,
let alone 2. More generally, the term-document matrix has |V | rows (one for each
word type in the vocabulary) and D columns (one for each document in the collec-
tion); as we’ll see, vocabulary sizes are generally in the tens of thousands, and the
number of documents can be enormous (think about all the pages on the web).
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set. Vector semantic models are also extremely practical because they can be learned
automatically from text without any complex labeling or supervision.

As a result of these advantages, vector models of meaning are now the standard
way to represent the meaning of words in NLP. In this chapter we’ll introduce the
two most commonly used models. First is the tf-idf model, often used as a baseline,
in which the meaning of a word is defined by a simple function of the counts of
nearby words. We will see that this method results in very long vectors that are
sparse, i.e. contain mostly zeros (since most words simply never occur in the context
of others).

Then we’ll introduce the word2vec model, one of a family of models that are
ways of constructing short, dense vectors that have useful semantic properties.

We’ll also introduce the cosine, the standard way to use embeddings (vectors)
to compute functions like semantic similarity, the similarity between two words,
two sentences, or two documents, an important tool in practical applications like
question answering, summarization, or automatic essay grading.

6.3 Words and Vectors

Vector or distributional models of meaning are generally based on a co-occurrence
matrix, a way of representing how often words co-occur. This matrix can be con-
structed in various ways; let’s begin by looking at one such co-occurrence matrix, a
term-document matrix.

6.3.1 Vectors and documents
In a term-document matrix, each row represents a word in the vocabulary and eachterm-document

matrix
column represents a document from some collection of documents. Fig. 6.2 shows a
small selection from a term-document matrix showing the occurrence of four words
in four plays by Shakespeare. Each cell in this matrix represents the number of times
a particular word (defined by the row) occurs in a particular document (defined by
the column). Thus fool appeared 58 times in Twelfth Night.

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.2 The term-document matrix for four words in four Shakespeare plays. Each cell
contains the number of times the (row) word occurs in the (column) document.

The term-document matrix of Fig. 6.2 was first defined as part of the vector
space model of information retrieval (Salton, 1971). In this model, a document isvector space

model
represented as a count vector, a column in Fig. 6.3.

To review some basic linear algebra, a vector is, at heart, just a list or arrayvector

of numbers. So As You Like It is represented as the list [1,114,36,20] and Julius
Caesar is represented as the list [7,62,1,2]. A vector space is a collection of vectors,vector space

characterized by their dimension. In the example in Fig. 6.3, the vectors are ofdimension

dimension 4, just so they fit on the page; in real term-document matrices, the vectors
representing each document would have dimensionality |V |, the vocabulary size.

Vector representation of documents

As You Like It is document [1, 114, 36, 20]

Words can be vectors too
battle is “the kind of word that occurs in Julius Caesar and Henry V”
fool is “the kind of word that occurs in comedies, especially Twelfth
Night”
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aardvark ... computer data result pie sugar ...
cherry 0 ... 2 8 9 442 25

strawberry 0 ... 0 0 1 60 19
digital 0 ... 1670 1683 85 5 4

information 0 ... 3325 3982 378 5 13
Figure 6.5 Co-occurrence vectors for four words in the Wikipedia corpus, showing six of
the dimensions (hand-picked for pedagogical purposes). The vector for digital is outlined in
red. Note that a real vector would have vastly more dimensions and thus be much sparser.
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Figure 6.6 A spatial visualization of word vectors for digital and information, showing just
two of the dimensions, corresponding to the words data and computer.

Note that |V |, the length of the vector, is generally the size of the vocabulary,
usually between 10,000 and 50,000 words (using the most frequent words in the
training corpus; keeping words after about the most frequent 50,000 or so is gener-
ally not helpful). But of course since most of these numbers are zero these are sparse
vector representations, and there are efficient algorithms for storing and computing
with sparse matrices.

Now that we have some intuitions, let’s move on to examine the details of com-
puting word similarity. Afterwards we’ll discuss the tf-idf method of weighting
cells.

6.4 Cosine for measuring similarity

To define similarity between two target words v and w, we need a measure for taking
two such vectors and giving a measure of vector similarity. By far the most common
similarity metric is the cosine of the angle between the vectors.

The cosine—like most measures for vector similarity used in NLP—is based on
the dot product operator from linear algebra, also called the inner product:dot product

inner product

dot product(v,w) = v ·w =
NX

i=1

viwi = v1w1 + v2w2 + ...+ vNwN (6.7)

As we will see, most metrics for similarity between vectors are based on the dot
product. The dot product acts as a similarity metric because it will tend to be high
just when the two vectors have large values in the same dimensions. Alternatively,
vectors that have zeros in different dimensions—orthogonal vectors—will have a
dot product of 0, representing their strong dissimilarity.
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Properties of embeddings

Similarity depends on window size C

C = ±2 ⇒ The nearest words to Hogwarts:

Sunnydale
Evernight

C = ±5 ⇒ The nearest words to Hogwarts:

Dumbledore
Malfoy
halfblood

Dependency-Based Word Embeddings, O Levy, Y Goldberg, ACL 2014
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Properties of embeddings

Two kinds of association between words

first-order co-occurrence (syntagmatic association)

words that typically are nearby each other (wrote/poem)

second-order co-occurrence (paradigmatic association)

words that have similar neighbours (wrote/said)
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Table 8: Examples of the word pair relationships, using the best word vectors from Table 4 (Skip-
gram model trained on 783M words with 300 dimensionality).

Relationship Example 1 Example 2 Example 3
France - Paris Italy: Rome Japan: Tokyo Florida: Tallahassee
big - bigger small: larger cold: colder quick: quicker

Miami - Florida Baltimore: Maryland Dallas: Texas Kona: Hawaii
Einstein - scientist Messi: midfielder Mozart: violinist Picasso: painter
Sarkozy - France Berlusconi: Italy Merkel: Germany Koizumi: Japan

copper - Cu zinc: Zn gold: Au uranium: plutonium
Berlusconi - Silvio Sarkozy: Nicolas Putin: Medvedev Obama: Barack

Microsoft - Windows Google: Android IBM: Linux Apple: iPhone
Microsoft - Ballmer Google: Yahoo IBM: McNealy Apple: Jobs

Japan - sushi Germany: bratwurst France: tapas USA: pizza

assumes exact match, the results in Table 8 would score only about 60%). We believe that word
vectors trained on even larger data sets with larger dimensionality will perform significantly better,
and will enable the development of new innovative applications. Another way to improve accuracy is
to provide more than one example of the relationship. By using ten examples instead of one to form
the relationship vector (we average the individual vectors together), we have observed improvement
of accuracy of our best models by about 10% absolutely on the semantic-syntactic test.

It is also possible to apply the vector operations to solve different tasks. For example, we have
observed good accuracy for selecting out-of-the-list words, by computing average vector for a list of
words, and finding the most distant word vector. This is a popular type of problems in certain human
intelligence tests. Clearly, there is still a lot of discoveries to be made using these techniques.

6 Conclusion

In this paper we studied the quality of vector representations of words derived by various models on
a collection of syntactic and semantic language tasks. We observed that it is possible to train high
quality word vectors using very simple model architectures, compared to the popular neural network
models (both feedforward and recurrent). Because of the much lower computational complexity, it
is possible to compute very accurate high dimensional word vectors from a much larger data set.
Using the DistBelief distributed framework, it should be possible to train the CBOW and Skip-gram
models even on corpora with one trillion words, for basically unlimited size of the vocabulary. That
is several orders of magnitude larger than the best previously published results for similar models.

An interesting task where the word vectors have recently been shown to significantly outperform the
previous state of the art is the SemEval-2012 Task 2 [11]. The publicly available RNN vectors were
used together with other techniques to achieve over 50% increase in Spearman’s rank correlation
over the previous best result [31]. The neural network based word vectors were previously applied
to many other NLP tasks, for example sentiment analysis [12] and paraphrase detection [28]. It can
be expected that these applications can benefit from the model architectures described in this paper.

Our ongoing work shows that the word vectors can be successfully applied to automatic extension
of facts in Knowledge Bases, and also for verification of correctness of existing facts. Results
from machine translation experiments also look very promising. In the future, it would be also
interesting to compare our techniques to Latent Relational Analysis [30] and others. We believe that
our comprehensive test set will help the research community to improve the existing techniques for
estimating the word vectors. We also expect that high quality word vectors will become an important
building block for future NLP applications.

10

Efficient Estimation of Word Representations in Vector Space, Mikolov et al., ICLR Workshops 2013
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vector(king)− vector(man) + vector(woman) ≈ vector(queen)

vector(Paris)− vector(France) + vector(Italy) ≈ vector(Rome)

Figure 2: Left panel shows vector offsets for three word
pairs illustrating the gender relation. Right panel shows
a different projection, and the singular/plural relation for
two words. In high-dimensional space, multiple relations
can be embedded for a single word.

provided. We have explored several related meth-
ods and found that the proposed method performs
well for both syntactic and semantic relations. We
note that this measure is qualitatively similar to rela-
tional similarity model of (Turney, 2012), which pre-
dicts similarity between members of the word pairs
(xb, xd), (xc, xd) and dis-similarity for (xa, xd).

6 Experimental Results

To evaluate the vector offset method, we used
vectors generated by the RNN toolkit of Mikolov
(2012). Vectors of dimensionality 80, 320, and 640
were generated, along with a composite of several
systems, with total dimensionality 1600. The sys-
tems were trained with 320M words of Broadcast
News data as described in (Mikolov et al., 2011a),
and had an 82k vocabulary. Table 2 shows results
for both RNNLM and LSA vectors on the syntactic
task. LSA was trained on the same data as the RNN.
We see that the RNN vectors capture significantly
more syntactic regularity than the LSA vectors, and
do remarkably well in an absolute sense, answering
more than one in three questions correctly. 2

In Table 3 we compare the RNN vectors with
those based on the methods of Collobert and We-
ston (2008) and Mnih and Hinton (2009), as imple-
mented by (Turian et al., 2010) and available online
3 Since different words are present in these datasets,
we computed the intersection of the vocabularies of
the RNN vectors and the new vectors, and restricted
the test set and word vectors to those. This resulted
in a 36k word vocabulary, and a test set with 6632

2Guessing gets a small fraction of a percent.
3http://metaoptimize.com/projects/wordreprs/

Method Adjectives Nouns Verbs All
LSA-80 9.2 11.1 17.4 12.8
LSA-320 11.3 18.1 20.7 16.5
LSA-640 9.6 10.1 13.8 11.3
RNN-80 9.3 5.2 30.4 16.2
RNN-320 18.2 19.0 45.0 28.5
RNN-640 21.0 25.2 54.8 34.7
RNN-1600 23.9 29.2 62.2 39.6

Table 2: Results for identifying syntactic regularities for
different word representations. Percent correct.

Method Adjectives Nouns Verbs All
RNN-80 10.1 8.1 30.4 19.0
CW-50 1.1 2.4 8.1 4.5
CW-100 1.3 4.1 8.6 5.0
HLBL-50 4.4 5.4 23.1 13.0
HLBL-100 7.6 13.2 30.2 18.7

Table 3: Comparison of RNN vectors with Turian’s Col-
lobert and Weston based vectors and the Hierarchical
Log-Bilinear model of Mnih and Hinton. Percent correct.

questions. Turian’s Collobert and Weston based vec-
tors do poorly on this task, whereas the Hierarchical
Log-Bilinear Model vectors of (Mnih and Hinton,
2009) do essentially as well as the RNN vectors.
These representations were trained on 37M words
of data and this may indicate a greater robustness of
the HLBL method.

We conducted similar experiments with the se-
mantic test set. For each target word pair in a rela-
tion category, the model measures its relational sim-
ilarity to each of the prototypical word pairs, and
then uses the average as the final score. The results
are evaluated using the two standard metrics defined
in the task, Spearman’s rank correlation coefficient
� and MaxDiff accuracy. In both cases, larger val-
ues are better. To compare to previous systems, we
report the average over all 69 relations in the test set.

From Table 4, we see that as with the syntac-
tic regularity study, the RNN-based representations
perform best. In this case, however, Turian’s CW
vectors are comparable in performance to the HLBL
vectors. With the RNN vectors, the performance im-
proves as the number of dimensions increases. Sur-
prisingly, we found that even though the RNN vec-

749

Linguistic Regularities in Continuous Space Word Representations, Mikolov et al., NAACL-HLT 2013
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Embeddings also pinpoint sexism implicit in text

vector(father) : vector(doctor) :: vector(mother) : vector(x)

Extreme she
1. homemaker
2. nurse
3. receptionist
4. librarian
5. socialite
6. hairdresser
7. nanny
8. bookkeeper
9. stylist
10. housekeeper

Extreme he
1. maestro
2. skipper
3. protege
4. philosopher
5. captain
6. architect
7. financier
8. warrior
9. broadcaster
10. magician

Gender stereotype she-he analogies
sewing-carpentry registered nurse-physician housewife-shopkeeper
nurse-surgeon interior designer-architect softball-baseball
blond-burly feminism-conservatism cosmetics-pharmaceuticals
giggle-chuckle vocalist-guitarist petite-lanky
sassy-snappy diva-superstar charming-affable
volleyball-football cupcakes-pizzas lovely-brilliant

Gender appropriate she-he analogies
queen-king sister-brother mother-father
waitress-waiter ovarian cancer-prostate cancer convent-monastery

Figure 1: Left The most extreme occupations as projected on to the she�he gender direction on
w2vNEWS. Occupations such as businesswoman, where gender is suggested by the orthography,
were excluded. Right Automatically generated analogies for the pair she-he using the procedure
described in text. Each automatically generated analogy is evaluated by 10 crowd-workers to whether
or not it reflects gender stereotype.

father is to a doctor as a mother is to a nurse. The primary embedding studied in this paper is the
popular publicly-available word2vec [19, 20] 300 dimensional embedding trained on a corpus of
Google News texts consisting of 3 million English words, which we refer to here as the w2vNEWS.
One might have hoped that the Google News embedding would exhibit little gender bias because
many of its authors are professional journalists. We also analyze other publicly available embeddings
trained via other algorithms and find similar biases (Appendix B).

In this paper, we quantitatively demonstrate that word-embeddings contain biases in their geometry
that reflect gender stereotypes present in broader society.1 Due to their wide-spread usage as basic
features, word embeddings not only reflect such stereotypes but can also amplify them. This poses a
significant risk and challenge for machine learning and its applications. The analogies generated from
these embeddings spell out the bias implicit in the data on which they were trained. Hence, word
embeddings may serve as a means to extract implicit gender associations from a large text corpus
similar to how Implicit Association Tests [11] detect automatic gender associations possessed by
people, which often do not align with self reports.

To quantify bias, we will compare a word vector to the vectors of a pair of gender-specific words. For
instance, the fact that ���!nurse is close to ����!woman is not in itself necessarily biased(it is also somewhat
close to ��!man – all are humans), but the fact that these distances are unequal suggests bias. To make
this rigorous, consider the distinction between gender specific words that are associated with a gender
by definition, and the remaining gender neutral words. Standard examples of gender specific words
include brother, sister, businessman and businesswoman. We will use the gender specific words to
learn a gender subspace in the embedding, and our debiasing algorithm removes the bias only from
the gender neutral words while respecting the definitions of these gender specific words.

We propose approaches to reduce gender biases in the word embedding while preserving the useful
properties of the embedding. Surprisingly, not only does the embedding capture bias, but it also
contains sufficient information to reduce this bias.We will leverage the fact that there exists a low
dimensional subspace in the embedding that empirically captures much of the gender bias.

2 Related work and Preliminary
Gender bias and stereotype in English. It is important to quantify and understand bias in languages
as such biases can reinforce the psychological status of different groups [28]. Gender bias in language
has been studied over a number of decades in a variety of contexts (see, e.g., [13]) and we only
highlight some of the findings here. Biases differ across people though commonalities can be detected.
Implicit Association Tests [11] have uncovered gender-word biases that people do not self-report and
may not even be aware of. Common biases link female terms with liberal arts and family and male
terms with science and careers [23]. Bias is seen in word morphology, i.e., the fact that words such as

1 Stereotypes are biases that are widely held among a group of people. We show that the biases in the word
embedding are in fact closely aligned with social conception of gender stereotype, as evaluated by U.S.-based
crowd workers on Amazon’s Mechanical Turk. The crowd agreed that the biases reflected both in the location of
vectors (e.g.

���!
doctor closer to ��!man than to ����!woman) as well as in analogies (e.g., he:coward :: she:whore.) exhibit

common gender stereotypes.

2

Man is to computer programmer as woman is to homemaker? Debiasing word embeddings, T Bolukbasi et al., NIPS 2016
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Figure 1: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same architec-
tures are used in both pre-training and fine-tuning. The same pre-trained model parameters are used to initialize
models for different down-stream tasks. During fine-tuning, all parameters are fine-tuned. [CLS] is a special
symbol added in front of every input example, and [SEP] is a special separator token (e.g. separating ques-
tions/answers).

ing and auto-encoder objectives have been used
for pre-training such models (Howard and Ruder,
2018; Radford et al., 2018; Dai and Le, 2015).

2.3 Transfer Learning from Supervised Data

There has also been work showing effective trans-
fer from supervised tasks with large datasets, such
as natural language inference (Conneau et al.,
2017) and machine translation (McCann et al.,
2017). Computer vision research has also demon-
strated the importance of transfer learning from
large pre-trained models, where an effective recipe
is to fine-tune models pre-trained with Ima-
geNet (Deng et al., 2009; Yosinski et al., 2014).

3 BERT

We introduce BERT and its detailed implementa-
tion in this section. There are two steps in our
framework: pre-training and fine-tuning. Dur-
ing pre-training, the model is trained on unlabeled
data over different pre-training tasks. For fine-
tuning, the BERT model is first initialized with
the pre-trained parameters, and all of the param-
eters are fine-tuned using labeled data from the
downstream tasks. Each downstream task has sep-
arate fine-tuned models, even though they are ini-
tialized with the same pre-trained parameters. The
question-answering example in Figure 1 will serve
as a running example for this section.

A distinctive feature of BERT is its unified ar-
chitecture across different tasks. There is mini-

mal difference between the pre-trained architec-
ture and the final downstream architecture.

Model Architecture BERT’s model architec-
ture is a multi-layer bidirectional Transformer en-
coder based on the original implementation de-
scribed in Vaswani et al. (2017) and released in
the tensor2tensor library.1 Because the use
of Transformers has become common and our im-
plementation is almost identical to the original,
we will omit an exhaustive background descrip-
tion of the model architecture and refer readers to
Vaswani et al. (2017) as well as excellent guides
such as “The Annotated Transformer.”2

In this work, we denote the number of layers
(i.e., Transformer blocks) as L, the hidden size as
H , and the number of self-attention heads as A.3

We primarily report results on two model sizes:
BERTBASE (L=12, H=768, A=12, Total Param-
eters=110M) and BERTLARGE (L=24, H=1024,
A=16, Total Parameters=340M).

BERTBASE was chosen to have the same model
size as OpenAI GPT for comparison purposes.
Critically, however, the BERT Transformer uses
bidirectional self-attention, while the GPT Trans-
former uses constrained self-attention where every
token can only attend to context to its left.4

1https://github.com/tensorflow/tensor2tensor
2http://nlp.seas.harvard.edu/2018/04/03/attention.html
3In all cases we set the feed-forward/filter size to be 4H ,

i.e., 3072 for the H = 768 and 4096 for the H = 1024.
4We note that in the literature the bidirectional Trans-

BERT: Bidirectional Encoder Representations from Transformers

Pre-training for language understanding using Masked Language
Model, then fine-tuning for particular tasks

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al, 2018
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Input-Output Representation

Single sentence or sentence pair as one token sequence

[CLS] marks start of input
[SEP] separates input sentences (e.g., ⟨Question,Answer⟩)

BERT tokenizer uses a variant of the WordPiece embedding model,
with a 30,000 token vocab

WordPiece is a variant of Byte Pair Encoding

(Relatively) common words are in the vocabulary: at, fairfax, 1910s
Other words are built from wordpieces: hypatia → h ##yp ##ati ##a

Input Representation

● Use 30,000 WordPiece vocabulary on input.
● Each token is sum of three embeddings
● Single sequence is much more efficient.
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What Can We Learn from Reconstructing the Input?

Rome is the capital of .

I put fork down on the table.

The woman walked across the street, checking for traffic over
shoulder.

I went to the ocean to see the fish, turtles, seals, and .

Overall, the value I got from the two hours watching it was the sum
total of the popcorn and the drink. The movie was .

Iroh went into the kitchen to make some tea. Standing next to Iroh,
Zuko pondered his destiny. Zuko left the .

I was thinking about the sequence that goes 1, 1, 2, 3, 5, 8, 13, 21,
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Pretrained (Large) Language Models Pretraining/Fine-tuning

The Pretraining/Finetuning paradigm

Pretraining through language modeling [Dai and Le, 2015]

Recall the language modeling task:

• Model !! "" "#:"%#), the probability 
distribution over words given their past 

contexts.

• There’s lots of data for this! (In English.)

Pretraining through language modeling:
• Train a neural network to perform language 

modeling on a large amount of text.

• Save the network parameters.

24

Decoder
(Transformer, LSTM, ++ )

Iroh goes to make tasty tea

goes to make tasty tea END

The Pretraining / Finetuning Paradigm

Pretraining can improve NLP applications by serving as parameter initialization.

25

Decoder
(Transformer, LSTM, ++ )

Iroh goes to make tasty tea

goes to make tasty tea END

Step 1: Pretrain (on language modeling)
Lots of text; learn general things!

Decoder
(Transformer, LSTM, ++ )

J/L

Step 2: Finetune (on your task)
Not many labels; adapt to the task!

… the movie was … 

General paradigm for tackling a variety of downstream tasks:
1 Pretrain (e.g., on LM): lots of text, learn general things
2 Finetune on your task: not many labels; adapt to the task

Which architectures?

Which pre-training tasks?
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Pretrained (Large) Language Models Pretraining/Fine-tuning

Pretraining Encoder-Decoders

Something like language modeling, but where a prefix of every input is
provided to the encoder (and not predicted)

Pretraining encoder-decoders: what pretraining objective to use?

For encoder-decoders, we could do something like language modeling, but where a 
prefix of every input is provided to the encoder and is not predicted.

47

ℎ#, … , ℎ& = Encoder "#, … , "&
ℎ&,#, … , ℎ' = 9:;<=:> "#, … , "&, ℎ#, … , ℎ&

.- ∼ 0"- + 2, ? > A

The encoder portion benefits from 
bidirectional context; the decoder portion is 

used to train the whole model through 
language modeling.

[Raffel et al., 2018]

!B, … , !C

!CDB, … , !EC

!CDE, … ,

encoder benefits from bidirectional context

decoder used to train the whole model through language modeling
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Pretrained (Large) Language Models Pretraining/Fine-tuning

Pretraining Encoder-Decoders

Pretraining objective: span corruption

Replace different-length spans from the input with unique
placeholders; decode out the spans that were removed

Pre-processing + LM at the decoder side
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Pretraining Encoder-Decoders

Targeted (as opposed to purely random) masking useful

Salient span masking (entities) works for trivia
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Steep Increase in Number of Parameters

Image credits: Huggingface
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GPT-3: In-Context Learning

Need for labeled data still may limit applicability of LMs

Humans do not require large supervised dataset to learn most
language tasks

Very large pre-trained LMs seem to perform some kind of learning by
example, without gradient steps

Recent trend: focus on prompting

TB Brown et al, Language Models are Few-Shot Learners, arXiv:2005.14165
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GPT-3: In-Context Learning
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Pretrained (Large) Language Models In-Context Learning

Spectrum of Learning Settings

Classic fine-tuning: model
trained via repeated gradient
updates using a large corpus of
example tasks

strong performance on many
benchmark tasks

need for labeled data for
every task

generalization out of
distribution

spurious features

Figure 2.1: Zero-shot, one-shot and few-shot, contrasted with traditional fine-tuning. The panels above show
four methods for performing a task with a language model – fine-tuning is the traditional method, whereas zero-, one-,
and few-shot, which we study in this work, require the model to perform the task with only forward passes at test
time. We typically present the model with a few dozen examples in the few shot setting. Exact phrasings for all task
descriptions, examples and prompts can be found in Appendix G.

• Zero-Shot (0S) is the same as one-shot except that no demonstrations are allowed, and the model is only given
a natural language instruction describing the task. This method provides maximum convenience, potential for
robustness, and avoidance of spurious correlations (unless they occur very broadly across the large corpus of
pre-training data), but is also the most challenging setting. In some cases it may even be difficult for humans
to understand the format of the task without prior examples, so this setting is in some cases “unfairly hard”.
For example, if someone is asked to “make a table of world records for the 200m dash”, this request can be
ambiguous, as it may not be clear exactly what format the table should have or what should be included (and
even with careful clarification, understanding precisely what is desired can be difficult). Nevertheless, for at
least some settings zero-shot is closest to how humans perform tasks – for example, in the translation example
in Figure 2.1, a human would likely know what to do from just the text instruction.

Figure 2.1 shows the four methods using the example of translating English to French. In this paper we focus on
zero-shot, one-shot and few-shot, with the aim of comparing them not as competing alternatives, but as different
problem settings which offer a varying trade-off between performance on specific benchmarks and sample efficiency.
We especially highlight the few-shot results as many of them are only slightly behind state-of-the-art fine-tuned models.
Ultimately, however, one-shot, or even sometimes zero-shot, seem like the fairest comparisons to human performance,
and are important targets for future work.

Sections 2.1-2.3 below give details on our models, training data, and training process respectively. Section 2.4 discusses
the details of how we do few-shot, one-shot, and zero-shot evaluations.

7
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Spectrum of Learning Settings

Few-shot learning: the model sees the task description and a few
examples of the task. No gradient updates are performed.

Figure 2.1: Zero-shot, one-shot and few-shot, contrasted with traditional fine-tuning. The panels above show
four methods for performing a task with a language model – fine-tuning is the traditional method, whereas zero-, one-,
and few-shot, which we study in this work, require the model to perform the task with only forward passes at test
time. We typically present the model with a few dozen examples in the few shot setting. Exact phrasings for all task
descriptions, examples and prompts can be found in Appendix G.

• Zero-Shot (0S) is the same as one-shot except that no demonstrations are allowed, and the model is only given
a natural language instruction describing the task. This method provides maximum convenience, potential for
robustness, and avoidance of spurious correlations (unless they occur very broadly across the large corpus of
pre-training data), but is also the most challenging setting. In some cases it may even be difficult for humans
to understand the format of the task without prior examples, so this setting is in some cases “unfairly hard”.
For example, if someone is asked to “make a table of world records for the 200m dash”, this request can be
ambiguous, as it may not be clear exactly what format the table should have or what should be included (and
even with careful clarification, understanding precisely what is desired can be difficult). Nevertheless, for at
least some settings zero-shot is closest to how humans perform tasks – for example, in the translation example
in Figure 2.1, a human would likely know what to do from just the text instruction.

Figure 2.1 shows the four methods using the example of translating English to French. In this paper we focus on
zero-shot, one-shot and few-shot, with the aim of comparing them not as competing alternatives, but as different
problem settings which offer a varying trade-off between performance on specific benchmarks and sample efficiency.
We especially highlight the few-shot results as many of them are only slightly behind state-of-the-art fine-tuned models.
Ultimately, however, one-shot, or even sometimes zero-shot, seem like the fairest comparisons to human performance,
and are important targets for future work.

Sections 2.1-2.3 below give details on our models, training data, and training process respectively. Section 2.4 discusses
the details of how we do few-shot, one-shot, and zero-shot evaluations.

7

learning from a broad distribution of tasks (implicit in the pre-training
data) and then rapidly adapting to a new task
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Spectrum of Learning Settings

One-shot learning: the model sees the task description and a single
example of the task. No gradient updates are performed.

Figure 2.1: Zero-shot, one-shot and few-shot, contrasted with traditional fine-tuning. The panels above show
four methods for performing a task with a language model – fine-tuning is the traditional method, whereas zero-, one-,
and few-shot, which we study in this work, require the model to perform the task with only forward passes at test
time. We typically present the model with a few dozen examples in the few shot setting. Exact phrasings for all task
descriptions, examples and prompts can be found in Appendix G.

• Zero-Shot (0S) is the same as one-shot except that no demonstrations are allowed, and the model is only given
a natural language instruction describing the task. This method provides maximum convenience, potential for
robustness, and avoidance of spurious correlations (unless they occur very broadly across the large corpus of
pre-training data), but is also the most challenging setting. In some cases it may even be difficult for humans
to understand the format of the task without prior examples, so this setting is in some cases “unfairly hard”.
For example, if someone is asked to “make a table of world records for the 200m dash”, this request can be
ambiguous, as it may not be clear exactly what format the table should have or what should be included (and
even with careful clarification, understanding precisely what is desired can be difficult). Nevertheless, for at
least some settings zero-shot is closest to how humans perform tasks – for example, in the translation example
in Figure 2.1, a human would likely know what to do from just the text instruction.

Figure 2.1 shows the four methods using the example of translating English to French. In this paper we focus on
zero-shot, one-shot and few-shot, with the aim of comparing them not as competing alternatives, but as different
problem settings which offer a varying trade-off between performance on specific benchmarks and sample efficiency.
We especially highlight the few-shot results as many of them are only slightly behind state-of-the-art fine-tuned models.
Ultimately, however, one-shot, or even sometimes zero-shot, seem like the fairest comparisons to human performance,
and are important targets for future work.

Sections 2.1-2.3 below give details on our models, training data, and training process respectively. Section 2.4 discusses
the details of how we do few-shot, one-shot, and zero-shot evaluations.

7

could be difficult to communicate the content or format of a task if
no examples are given
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Spectrum of Learning Settings

Zero-shot learning: the model predicts the answer given only a natural
language description of the task. No gradient updates are performed.

Figure 2.1: Zero-shot, one-shot and few-shot, contrasted with traditional fine-tuning. The panels above show
four methods for performing a task with a language model – fine-tuning is the traditional method, whereas zero-, one-,
and few-shot, which we study in this work, require the model to perform the task with only forward passes at test
time. We typically present the model with a few dozen examples in the few shot setting. Exact phrasings for all task
descriptions, examples and prompts can be found in Appendix G.

• Zero-Shot (0S) is the same as one-shot except that no demonstrations are allowed, and the model is only given
a natural language instruction describing the task. This method provides maximum convenience, potential for
robustness, and avoidance of spurious correlations (unless they occur very broadly across the large corpus of
pre-training data), but is also the most challenging setting. In some cases it may even be difficult for humans
to understand the format of the task without prior examples, so this setting is in some cases “unfairly hard”.
For example, if someone is asked to “make a table of world records for the 200m dash”, this request can be
ambiguous, as it may not be clear exactly what format the table should have or what should be included (and
even with careful clarification, understanding precisely what is desired can be difficult). Nevertheless, for at
least some settings zero-shot is closest to how humans perform tasks – for example, in the translation example
in Figure 2.1, a human would likely know what to do from just the text instruction.

Figure 2.1 shows the four methods using the example of translating English to French. In this paper we focus on
zero-shot, one-shot and few-shot, with the aim of comparing them not as competing alternatives, but as different
problem settings which offer a varying trade-off between performance on specific benchmarks and sample efficiency.
We especially highlight the few-shot results as many of them are only slightly behind state-of-the-art fine-tuned models.
Ultimately, however, one-shot, or even sometimes zero-shot, seem like the fairest comparisons to human performance,
and are important targets for future work.

Sections 2.1-2.3 below give details on our models, training data, and training process respectively. Section 2.4 discusses
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task unfairly hard?

in some settings, closest to how humans perform tasks
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Reinforcement Learning with Human Feedback
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What have we got?

Z Ji et al, Survey of Hallucination in Natural Language Generation, 2022, arXiv:2202.03629
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What have we got?

Chain-of-Thought Prompting Elicits Reasoning
in Large Language Models

Jason Wei Xuezhi Wang Dale Schuurmans Maarten Bosma

Brian Ichter Fei Xia Ed H. Chi Quoc V. Le Denny Zhou

Google Research, Brain Team
{jasonwei,dennyzhou}@google.com

Abstract

We explore how generating a chain of thought—a series of intermediate reasoning
steps—significantly improves the ability of large language models to perform
complex reasoning. In particular, we show how such reasoning abilities emerge
naturally in sufficiently large language models via a simple method called chain-of-
thought prompting, where a few chain of thought demonstrations are provided as
exemplars in prompting.
Experiments on three large language models show that chain-of-thought prompting
improves performance on a range of arithmetic, commonsense, and symbolic
reasoning tasks. The empirical gains can be striking. For instance, prompting a
PaLM 540B with just eight chain-of-thought exemplars achieves state-of-the-art
accuracy on the GSM8K benchmark of math word problems, surpassing even
finetuned GPT-3 with a verifier.

A: The cafeteria had 23 apples originally. They used 
20 to make lunch. So they had 23 - 20 = 3. They 
bought 6 more apples, so they have 3 + 6 = 9. The 
answer is 9.

Chain-of-Thought Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of 
tennis balls. Each can has 3 tennis balls. How many 
tennis balls does he have now? 

A: The answer is 11. 

Q: The cafeteria had 23 apples. If they used 20 to 
make lunch and bought 6 more, how many apples 
do they have?

A: The answer is 27.

Standard Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of 
tennis balls. Each can has 3 tennis balls. How many 
tennis balls does he have now? 

A: Roger started with 5 balls. 2 cans of 3 tennis balls 
each is 6 tennis balls. 5 + 6 = 11. The answer is 11. 

Q: The cafeteria had 23 apples. If they used 20 to 
make lunch and bought 6 more, how many apples 
do they have?

Model Input

Model Output Model Output

Model Input

Figure 1: Chain-of-thought prompting enables large language models to tackle complex arithmetic,
commonsense, and symbolic reasoning tasks. Chain-of-thought reasoning processes are highlighted.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).
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The Big Picture NLP

What is NLP about?

Automating the analysis, generation, and acquisition of human (“natural”)
language

Analysis (or “understanding” or “processing” . . . ): input is language,
output is some representation that supports useful action

Generation: input is that representation, output is language

Acquisition: obtaining the representation and necessary algorithms,
from knowledge and data

Representation?

An excellent NLP textbook is D Jurafsky & JH Martin, Speech and Language Processing, 3rd Ed., available online
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The Big Picture Levels of linguistic representation

Levels of linguistic representation

discourse

pragmatics

semantics

syntax

lexemes

morphology

phonology orthography

phonetics

speech text
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The Big Picture NLP areas

What is NLP about?

Cultural 
Analytics

Textual 
Inference

Dialogue 
Systems

Information 
Retrieval

Stance 
Classification

Computational 
Linguistics

Question 
Answering

Social Media 
Analysis

Fact 
Checking

Text 
Generation

Text 
Classification

Machine 
Translation

Speech 
Processing

Argument
Mining

Spell 
Checking

Information 
Extraction

Sentiment 
Analysis

Summari
zation
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The Big Picture Why NLP is hard

Why it’s hard

Input is likely to be noisy

Linguistic representations are theorized constructs; we cannot
observe them directly

Difficult to obtain training data for each aspects

The mappings between levels are extremely complex

Appropriateness of a representation depends on the application

Natural language is ambiguous
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The Big Picture Ambiguity

Ambiguity

Each string may have many possible interpretations at every level

Correct resolution of the ambiguity depends on the intended
meaning, which is often inferable from context

People are good at linguistic ambiguity resolution

Computer not so

How do we represent sets of possible alternatives?
How do we represent context?
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The Big Picture Ambiguity

Examples of ambiguities

Prepositional phrase attachment ambiguity

Examples taken from http://web.stanford.edu/class/cs224n/
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The Big Picture Ambiguity

Examples of ambiguities

Verb phrase attachment ambiguityVerb Phrase (VP) attachment ambiguity

Examples taken from http://web.stanford.edu/class/cs224n/
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The Big Picture Pragmatics and discourse

Pragmatics

Any non-local meaning phenomena

“Can you pass the salt?”
“Are you 18?” “Yes, I’m 25.”
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NLP areas Question answering

Question answering

Focus on questions that can be answered with simple facts expressed in
short texts (factoid questions)

Who founded Virgin Airlines?

What is the average age of the onset of autism?

Where is Apple Computer based?

Two paradigms:

IR-based: find relevant documents (on the Web or document
collections) and passages, then use reading comprehension to read
and draw an answer directly from spans of text

Knowledge-based: build a semantic (logic) representation of the
query, then query a database of facts

Large industrial systems (like IBM Watson) are usually hybrid
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NLP areas Question answering

Knowledge-based question answering

25.2 • KNOWLEDGE-BASED QUESTION ANSWERING 11

We do the analogous thing to compute a span-end probability:

Pendi =
eE·Ti

P
j eE·Tj

(25.15)

The score of a candidate span from position i to j is S · Ti + E · Tj, and the highest
scoring span in which j � i is chosen is the model prediction. The training objective
for fine-tuning is the sum of the log-likelihoods of the correct start and end positions
for each observation.

25.2 Knowledge-based Question Answering

While an enormous amount of information is encoded in the vast amount of text
on the web, information obviously also exists in more structured forms. We use
the term knowledge-based question answering for the idea of answering a natural
language question by mapping it to a query over a structured database. Like the text-
based paradigm for question answering, this approach dates back to the earliest days
of natural language processing, with systems like BASEBALL (Green et al., 1961)
that answered questions from a structured database of baseball games and stats.

Systems for mapping from a text string to any logical form are called seman-
tic parsers. Semantic parsers for question answering usually map either to some
version of predicate calculus or a query language like SQL or SPARQL, as in the
examples in Fig. 25.9.

Question Logical form
When was Ada Lovelace born? birth-year (Ada Lovelace, ?x)

What states border Texas? l x.state(x) ^ borders(x,texas)
What is the largest state argmax(lx.state(x),lx.size(x))
How many people survived the sinking of

the Titanic
(count (!fb:event.disaster.survivors

fb:en.sinking of the titanic))

Figure 25.9 Sample logical forms produced by a semantic parser for question answering. These range from
simple relations like birth-year, or relations normalized to databases like Freebase, to full predicate calculus.

The logical form of the question is thus either in the form of a query or can easily
be converted into one. The database can be a full relational database, or simpler
structured databases like sets of RDF triples. Recall from Chapter 18 that an RDF
triple is a 3-tuple, a predicate with two arguments, expressing some simple relation
or proposition. Popular ontologies like Freebase (Bollacker et al., 2008) or DBpedia
(Bizer et al., 2009) have large numbers of triples derived from Wikipedia infoboxes,
the structured tables associated with certain Wikipedia articles.

The simplest formation of the knowledge-based question answering task is to
answer factoid questions that ask about one of the missing arguments in a triple.
Consider an RDF triple like the following:

subject predicate object
Ada Lovelace birth-year 1815

This triple can be used to answer text questions like ‘When was Ada Lovelace
born?’ or ‘Who was born in 1815?’. Question answering in this paradigm requires
mapping from textual strings like ”When was ... born” to canonical relations in the
knowledge base like birth-year. We might sketch this task as:

Semantic parsing: mapping a text string to a logical form

Logical form of question easy to convert into database query

Simplest form of knowledge-based QA is to answer factoid questions
that ask about one of the missing arguments in a triple

E.g., the RDF triple Ada Lovelace/birth-year/1815 can be used to
answer questions like

When was Ada Lovelace born? → birth-year(Ada Lovelace, ?x)

Who was born in 1815? → birth-year(?x, 1815)
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NLP areas Machine Translation

Neural Machine Translation (NMT)
En

co
de

r 
RN

N
Neural Machine Translation (NMT)

<START>

Source sentence (input)

         il         a           m’   entarté

The sequence-to-sequence model
Target sentence (output)

D
ecoder RN

N

Encoder RNN produces 
an encoding of the 
source sentence.

Encoding of the source sentence.  
Provides initial hidden state  

for Decoder RNN.

 Decoder RNN is a Language Model that 
generates target sentence, conditioned on 

encoding.

he

ar
gm

ax
he

ar
gm

ax

hit

hit

ar
gm

ax

me

Note: This diagram shows test time behavior: 
decoder output is fed in          as next step’s input

with     a        pie    <END>

 me       with    a       pie

ar
gm

ax

ar
gm

ax

ar
gm

ax

ar
gm

ax

 21
Source: http://web.stanford.edu/class/cs224n/
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Dialogue systems
26.4 • THE DIALOGUE-STATE ARCHITECTURE 17

DIALOG STATE TRACKING OVERVIEW

LEAVING FROM DOWNTOWN

LEAVING AT ONE P M

ARRIVING AT ONE P M

0.6

0.2

0.1

{ from: downtown }

{ depart-time: 1300 }

{ arrive-time: 1300 }

0.5

0.3

0.1

from:        CMU
to:          airport
depart-time: 1300
confirmed:   no
score:       0.10

from:        CMU
to:          airport
depart-time: 1300
confirmed:   no
score:       0.15

from:        downtown
to:          airport
depart-time: --
confirmed:   no
score:       0.65

Automatic Speech 
Recognition (ASR)

Spoken Language 
Understanding (SLU)

Dialog State 
Tracker (DST)

Dialog Policy

act:  confirm
from: downtown

FROM DOWNTOWN, 
IS THAT RIGHT?

Natural Language 
Generation (NLG)Text to Speech (TTS)

Figure 1: Principal components of a spoken dialog system.

The topic of this paper is the dialog state tracker (DST). The DST takes as input all of the dialog
history so far, and outputs its estimate of the current dialog state – for example, in a restaurant
information system, the dialog state might indicate the user’s preferred price range and cuisine,
what information they are seeking such as the phone number of a restaurant, and which concepts
have been stated vs. confirmed. Dialog state tracking is difficult because ASR and SLU errors are
common, and can cause the system to misunderstand the user. At the same time, state tracking is
crucial because the dialog policy relies on the estimated dialog state to choose actions – for example,
which restaurants to suggest.

In the literature, numerous methods for dialog state tracking have been proposed. These are
covered in detail in Section 3; illustrative examples include hand-crafted rules (Larsson and Traum,
2000; Bohus and Rudnicky, 2003), heuristic scores (Higashinaka et al., 2003), Bayesian networks
(Paek and Horvitz, 2000; Williams and Young, 2007), and discriminative models (Bohus and Rud-
nicky, 2006). Techniques have been fielded which scale to realistically sized dialog problems and
operate in real time (Young et al., 2010; Thomson and Young, 2010; Williams, 2010; Mehta et al.,
2010). In end-to-end dialog systems, dialog state tracking has been shown to improve overall system
performance (Young et al., 2010; Thomson and Young, 2010).

Despite this progress, direct comparisons between methods have not been possible because past
studies use different domains and different system components for ASR, SLU, dialog policy, etc.
Moreover, there has not been a standard task or methodology for evaluating dialog state tracking.
Together these issues have limited progress in this research area.

The Dialog State Tracking Challenge (DSTC) series has provided a first common testbed and
evaluation suite for dialog state tracking. Three instances of the DSTC have been run over a three

5

Figure 26.11 Architecture of a dialogue-state system for task-oriented dialogue from Williams et al. (2016).

has expressed so far). The dialogue policy decides what the system should do or say
next. The dialogue policy in GUS was simple: ask questions until the frame was full
and then report back the results of some database query. But a more sophisticated
dialogue policy can help a system decide when to answer the user’s questions, when
to instead ask the user a clarification question, when to make a suggestion, and so on.
Finally, dialogue state systems have a natural language generation component. In
GUS, the sentences that the generator produced were all from pre-written templates.
But a more sophisticated generation component can condition on the exact context
to produce turns that seem much more natural.

As of the time of this writing, most commercial system are architectural hybrids,
based on GUS architecture augmented with some dialogue-state components, but
there are a wide variety of dialogue-state systems being developed in research labs.

26.4.1 Dialogue Acts

Dialogue-state systems make use of dialogue acts. Dialogue acts represent the in-dialogue acts

teractive function of the turn or sentence, combining the idea of speech acts and
grounding into a single representation. Different types of dialogue systems require
labeling different kinds of acts, and so the tagset—defining what a dialogue act is
exactly— tends to be designed for particular tasks.

Figure 26.12 shows a tagset for a restaurant recommendation system, and Fig. 26.13
shows these tags labeling a sample dialogue from the HIS system (Young et al.,
2010). This example also shows the content of each dialogue acts, which are the slot
fillers being communicated. So the user might INFORM the system that they want
Italian food near a museum, or CONFIRM with the system that the price is reasonable.
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Argument mining

CNET, Jun 19, 2018
N Slonim et al An autonomous debating system, Nature 591:379–384, 2021.
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NLP for all (?)
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NLP for all? NLP as a service

NLP-as-a-service

Until recently, mainly custom solutions based on libraries providing
“bricks”

PyTorch, Natural Language Toolkit, spaCy, . . .

Proliferation of cloud-based NLP business solutions for all kinds of
users

Trendy:

GPT-4: the punch of heavy-weights + multi-modality (techreport)
The bazaar: Hugging Face transformer library
One ring to rule them all: LangChain
Llama2: power to the people?
Llamaindex for data-aware applications (don’t hallucinate, retrieve)
Ever more powerful integrated environments: PyTorch, JAX, Flax

“Cookbook-based” NLP system deployment
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Conclusion Take-home messages

Conclusion

NLP is not only very popular, but also very challenging

Variety of tasks

Recent breakthroughs thanks to methods for obtaining powerful input
representations

Focus on neural methods and large models, but businesses use large
variety of approaches of all types and sizes

Great emphasis on costs, model compression and sustainability

PLLMs are mainstream

Available as services for high-level programming/system integration
Exhibit emerging properties
Some reasoning abilities; ok with chain-of-thought, but challenged by
sophisticated inference
Alongside the excitement, a whole new set of ethical, legal, societal,
economic issues
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Conclusion

For example, copyright issues

Speak, Memory: An Archaeology of Books Known to ChatGPT/GPT-4

Kent K. Chang, Mackenzie Cramer, Sandeep Soni and David Bamman⇤

University of California, Berkeley
{kentkchang,mackenzie.hanh,sandeepsoni,dbamman}@berkeley.edu

Abstract

In this work, we carry out a data archaeology
to infer books that are known to ChatGPT and
GPT-4 using a name cloze membership infer-
ence query. We find that OpenAI models have
memorized a wide collection of copyrighted
materials, and that the degree of memorization
is tied to the frequency with which passages
of those books appear on the web. The ability
of these models to memorize an unknown set
of books complicates assessments of measure-
ment validity for cultural analytics by contami-
nating test data; we show that models perform
much better on memorized books than on non-
memorized books for downstream tasks. We
argue that this supports a case for open models
whose training data is known.

1 Introduction

Research in cultural analytics at the intersection of
NLP and narrative is often focused on developing
algorithmic devices to measure some phenomenon
of interest in literary texts (Piper et al., 2021; Yo-
der et al., 2021; Coll Ardanuy et al., 2020; Evans
and Wilkens, 2018). The rise of large-pretrained
language models such as ChatGPT and GPT-4 has
the potential to radically transform this space by
both reducing the need for large-scale training data
for new tasks and lowering the technical barrier to
entry (Underwood, 2023).

At the same time, however, these models also
present a challenge for establishing the validity of
results, since few details are known about the data
used to train them. As others have shown, the accu-
racy of such models is strongly dependent on the
frequency with which a model has seen informa-
tion in the training data, calling into question their
ability to generalize (Razeghi et al., 2022; Kandpal
et al., 2022a; Elazar et al., 2022); in addition, this
phenomenon is exacerbated for larger models (Car-
lini et al., 2022; Biderman et al., 2023). Knowing

⇤Details of author contributions listed in the appendix.

Wow. I sit down, fish the questions from my
backpack, and go through them, inwardly curs-
ing [MASK] for not providing me with a brief
biography. I know nothing about this man I’m
about to interview. He could be ninety or he
could be thirty. ! Kate (James, Fifty Shades
of Grey).

Some days later, when the land had been moist-
ened by two or three heavy rains, [MASK] and
his family went to the farm with baskets of seed-
yams, their hoes and machetes, and the plant-
ing began. ! Okonkwo (Achebe, Things Fall
Apart).

Figure 1: Name cloze examples. GPT-4 answers both
of these correctly.

what books a model has been trained on is critical
to assess such sources of bias (Gebru et al., 2021),
which can impact the validity of results in cultural
analytics: if evaluation datasets contain memorized
books, they provide a false measure of future perfor-
mance on non-memorized books; without knowing
what books a model has been trained on, we are
unable to construct evaluation benchmarks that can
be sure to exclude them.

In this work, we carry out a data archaeology to
infer books that are known to several of these large
language models. This archaeology is a member-
ship inference query (Shokri et al., 2017) in which
we probe the degree of exact memorization (Tiru-
mala et al., 2022) for a sample of passages from
571 works of fiction published between 1749–2020.
This difficult name cloze task, illustrated in figure
1, has 0% human baseline performance.

This archaeology allows us to uncover a number
of findings about the books known to OpenAI mod-
els which can impact downstream work in cultural
analytics:

1. OpenAI models, and GPT-4 in particular, have
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Conclusion Take-home messages

A final thought

Mainstream NLP (LLMs) as advanced but yet naive HCI

Crucial role of symbolic AI in unlocking the potential of synergy
between NLP and logical frameworks for truly intelligent agency
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Conclusion Shameless self-promotion

Work with us - https://site.unibo.it/nlp/en

Project works/master projects in NLP available in argument mining,
legal text processing, multilingualism, multi-modal NLP, chatbots,
neuro-symbolic NLP, and more
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The End

Thank You
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