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What is Computer Vision?

The science (and art) of making computers gain a high-level understanding
of images (and videos, and 3D data, and ...)

Example credit: Andrej Karpathy
https://karpathy.github.io/2012/10/22/state-of-
computer-vision/



https://karpathy.github.io/2012/10/22/state-of-computer-vision/
https://karpathy.github.io/2012/10/22/state-of-computer-vision/
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What does an image tell you?

3D structure, place classification




What does an image tell you?

Interesting “objects’




What does an image tell you?

Obect boundaries




What does an image tell you?

Relative depth placement
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What does an image tell you?

Named entity recognition

President




What does an image tell you?

A story




The previous slide has not aged well...

+

@ There are at least 2 mirrors in this picture. @ Where is Obama's foot positioned?
What is the person standing on? Obama's foot is positioned on the right side of the scale.
The person is standing on a rug. @ What happens as a result?

OB e is standi | (@] ; ;

€ IS standing on a scale. The scale shows a higher weight.
+
@ This is a picture of Barack Obama. He is a former president of 6 : -
the United States. | think you are right. @ Is the person on the scale aware of it?

e gl ~ : .
@ How many people are there in this picture? @ What is he doing? 6 el s

+
@ There are at least 5 people in this picture.

& It was taken in a school. https://twitter.com/inoryy/status/1522621712382234624

https://www.deepmind.com/blog/tackling-multiple-tasks-with-a-single-visual-language-model
I
o

+
@ He is looking at the scale. @

Do you think that's why people are laughing?



https://twitter.com/inoryy/status/1522621712382234624
https://www.deepmind.com/blog/tackling-multiple-tasks-with-a-single-visual-language-model

..orhas it?

.but....

A +
@ This is a picture of Barack Obama. He is a former president of O This is a picture of Barack Obama. He is a former president of
the United States. the United States.
@ How many giraffes are there? @ How many giraffes are there in the image?
] ]
- There are two giraffes. i o X (& | can't see any giraffes in the image. i o X

https://twitter.com/geoffreyirving/status/1522669461278539777



https://twitter.com/geoffreyirving/status/1522669461278539777

RGB Images are tensors in a computer

height
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channels
or depth
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Moravec's
paradox

Moravec wrote in 1988, "it is
comparatively easy to make
computers exhibit adult level
performance on intelligence
tests or playing checkers, and
difficult or impossible to give
them the skills of a one-year-old
when it comes to perception and
mobility”

‘{0: AlphaGo  Lee Sedol
D L Z @
IS 4




Computer vision is (was?) hard

WHEN A USER TAKES A PHOTO,
THE APP SHOULD CHECK WHETHER
THEY'RE IN A NATIONAL PARK ...

SURE, ERSY GIS LOOKUR
GIMME A FEW HO(RS.

. AND CHECK WHETHER
TrE PHOTD 15 OF A BIRD.

IU.NE:DARESEMCH

TEAM AND FiVEYEﬁRS
2012: 2019:
from tensorflow.keras.applications
import PretrainedBirdDetector
xkicd Lumcomeoromme
BLACK LIVES MATTER

J
IN CS, IT CAN BE HARD TO EXPLAIN
HOW TO HELP

THE DIFFERENCE BETWEEN THE EASY
AND THE VIRTUALLY IMPOSSIBLE.

https://xkcd.com/1425/

14



https://xkcd.com/1425/

Image Classification

Input

Output
Choose among
these categories

Dog
Cat
Bird
—rog
Person




Some challenges

Occlusions

Viewpoint variations lllumination changes




Categories as numbers

0 ->Dog

1 -> Cat

2 -> Bird
3->Frog

4 -> Person




Birds...

Traditional Computer Vision techniques, e.g. handcrafted rules based on edges, need a controlled
environment, usually feasible in industrial vision applications, otherwise they are very brittle.




(Supervised) Machine learning to the rescue




Machine learning or data-driven approach

We can think of machine learning as a new way to instruct computers about what we want them to do.

\

Example { Example
Inputs M Outputs

i | Cat Dog, .. |
= ’_l_l-.

Black box
_ «programy

Training (aka learning, optimization)

Testing (aka inference, prediction)

«_—_—_—_—_—_—_—_




CIFAR 10

Subset of the 80 million Tiny Images

airplane i-% » ..='h;

automobile E"hg‘ dataset . .

i ﬁ;' ﬂ!\ '-. https.//www.cs.toronto.edu/~kriz/cifar.ht
| — ml

cat .Ea..!“

deer H-I,R&‘n.

w  EEsIsBE R 0

frog E..-....- 50k training images

horse .uﬂ?.-'.u 10k testing images

ship ag.‘ﬂgl 32x32 RGB images

ok R e 0 A G

Learning Multiple Lavers of Features from Tiny Images, Alex Krizhevsky, 2009.

T



https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

CIFAR 100

Another subset of the 80 million Tiny Images
dataset

100 classes

50k training images (500 per class)
10k testing images (100 per class)
32x32 RGB images

Hierarchical structure: 20 super-classes with 5 sub-
classes each

Learning Multiple Lavers of Features from Tiny Images, Alex Krizhevsky, 2009.



https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

ImageNet/ ImageNet 21k
W i

35 L Tar Bl ML Y m,
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mammal — placental —— carnivore canine —-worki ng d
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vehicle craft — watercraft —— sailingvessel ——  sailboat —  trimaran

14 millions RGB images at full and variable resolution with average size about 400 x 350.

Hierarchical structure: modelled on about 21k synsets from WordNet (out of 50k)

Deng et al, “imageNet: A Large-Scale Hierarchical Image Database”, CVPR 2009




Linear classifier

O (plane) | 454

1 (car) | 128.3

] _ 2 (bird) | 253
0)=2 7

0.23

-1.34 argmax

N

f(x; W) =Wx = scores -

aka logits 03
\ \ 78

32x32x3=3072x1 CIFAR image 10x3072 10x1 2




What does a linear model learn?

Accuracy about 38% on CIFAR10
Let's use the template matching plane car bird cat deer
interpretation of a linear classifier to

understand what the model is learning »

It looks like the background color is the ' % |
predominant feature used by the model

Moreover, one template cannot capture .

multiple a;zfearances within one class, horse ship truck

dog frog
e.g. rotated cars, trucks, etc..
Distance between templates and
images is still a distance in input space,

same problem we had with k-NN
classifier, and performance is similar




Representation Is important
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Representation learning

Improves

Fixed representation

Apply your L
creativity
here

PLON"RLS
codewords

frequency
I
I
4
4
o
» o

Improves forward Improves forward Improves

backward

[
[

o—> i Transform
[

backward forward

Transform

Deep learning = Representation learning

) backward




Convolutions

In traditional image processing and computer vision, we usually rely on convolution/correlation with
hand-crafted filters (kernels) to process images (e.g. denoise or detect local features).

oUnlike linear layers, in a convolution, the input and output are not
flattened, i.e. convolution preserves the spatial structure of images.

o Unlike linear layers, a convolution processes only a — small — set of
neighboring pixels at each location. In other words, each output unit is
connected only to local input units. This realizes a so called local
receptive field.

o Unlike linear layers, the parameters associated with the connections
between an output unit and its input neighbors are the same for all
output units. Thus, parameters are said to be shared and the
convolution seamlessly learns the same detector, regardless of the
input position.

Convolutions embody inductive biases dealing with the structure of images: images exhibit
informative local patterns that may appear everywhere across an image.




Convolution - animation

x1 =0 x1

x1 x0 x1 e

{1 =1 x0

..

filters output

https://colab.research.google.com/github/GokuMohandas/Made-With-ML/blob/main/notebooks/11_Convolutional_Neural_Networks.ipynb



https://colab.research.google.com/github/GokuMohandas/Made-With-ML/blob/main/notebooks/11_Convolutional_Neural_Networks.ipynb

Multiple input channels

Images have 3 channels, so convolution kernels will be a 3-dimensional tensors of size 3 X Hy X Wy and

3
(K = 1](j,0) = K,(m,DI,j—m,i—10)+b
727 1 i

This is still a 2D convolution, but | | As usual, we actually

over vector-valued functions, not | | compute an affine

a 3D convolution (notice we do function, so we also have a
not slide over channels) bias term

Filter or kernel,
eg.3x5x%x5

AN

Filters and input depth always match, and the third dimension of a filter

is usually implicit, i.e. we define this as a “5 by 5 convolution®, but it has
Input image, / 5 x 5 x 3 = 75 parameters (76 with the bias), not 25

€.g.3 X 32 x 32




Qutput activation

(K *1](J,

S‘S‘K(ml)l G—mi—10)+b
m 1

n=1

By sliding the filter over the
image, we get a single-valued
output image, which is the

§ output activation
L 9

| o It is also called feature map,
When the filter is at activation map, etc...

position (j, i) on the
iInput image, we
compute one number

Input image, Output activation,
e.g.3 x32 x 32 eg.1x28 x 28

Filter or kernel,
eg.3x5x5




Activation

We can repeat it with a second filter, with different weights, e.g. a filter that detects horizontal edges
instead of vertical ones

3
[K(Z) * I](i' i) = y nyflz)(m, l)](] —m,i—1)+ p®2)
[

n=1 m

Filter or kernel,
eg.3x5x5

=

Input image,
€.g.3 X 32 X 32

Output activation,
e.0.2x28 x 28




Convolutional layer

If we have 4 filters, each of size 3 X 5 x 5, we can describe the overall operation realized by the layer as

3
(K *11,(, i) = 7 S‘S‘K,(lk)(m, DIG-mi—-D+b®  k=1,.., 4
l

n=1 m

4 N

[] [] []

K@ K®) K®)

p p®3 p@
Input image, Conv 2D filter Output activation,
e.g.3x32x32 eg.4xXx3x5x%x5 e.g.4x28x28




Convolutional layer

In the general case, we compute C,.: convolutions between vector-valued kernels and input activations

K * 11, G, l)—S‘S‘S‘K(R)(m DLG—mi-0+b®  k=1,. Cpp

n=1 m

4 N

[l [ [

(1) K(Z) K(3) K(Cout)
\b(l) b(z) b(3) b(couty
Input activation Conv 2D filter Output activation
Cin X Hin X Win Cout X Cin X HK X WK Cout X Hout X Wout




Convolutional Neural Networks

[ 2D Conv ] 2D Conv
flatten =
[ RelLU ] ReLU g
{ Max—PooI] Max—PooI
\ J \ J
Y . Y .
N convolutional+pooling layers followed by M linear layers The final linear
iS | layer is also
This is also called the feature extractor
called the
classifier

T



ILSVRC error rate evolution

ILSVRC Top-5 error rate

30
25 .
Successful architectures*

20
15
10

| I I

0 g,

2010 2011 2012 2013 2014 2014 2015 2016 2017
(AlexNet) (ZFNet) (VGG) (Inception-v1) (ResNet) (ResNeXt) (SENet)

*Results based on ensembles and, sometimes, heavy test-time augmentation




AlexNet

5 convolutional layers (conv+relu) optionally followed by max-pooling
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AlexNet

Won ILSVRC 2012.

Was trained on two GTX580 GPUSs. ﬁ? ) \/ 2o \ / o3 \dense

Used local response normalization (LRN) in u j

some layers, not used in subsequent B[] fense

architectures. ) T L
pjoling 128 r;;ﬂ;;ing

Took between five and six days to train

"All our experiments suggest that our results
can be improved simply by waiting for faster
GPUs and bigger datasets to become
available.”

Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks®, NeurlPS 2012

T




VGG-16 VGG-19
. ConvNet Conﬁg:uration
VGG: Deep but regular S S R R
) 1T weight | 11 weight | 13 weight 16 weight | 16 weight 19 weight
layers layers layers layers layers layers
. mnput (224 x 224 RGB imagp)
Second place in ILSVRC 201 4, 7.5% tOp‘S error conv3-64 | conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
. - . . LRN conv3-64 conv3-64 conv3-64 conv3-64
Commit to explore the effectiveness of simple design — e gl — —
1 1 1 1 . convas- convas- convs- convs- convas- convs-
choices, by allowing only the combination of : oo | oo g | e og oo e
. maxpool
o 3x3 COﬂVO|UtI0nS, S=1 ) P=1 conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 || conv3-256
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 [ conv3-256
o 2X2 max—pooling, S=2, P=0 convl-256 | conv3-256 |} conv3-256
conv3-256
maxpool
o #channels doubles after each pOOI conv3-512 | conv3-512 | conv3-512 | conv3-512 [ conv3-512 [ conv3-512 |
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 W conv3-512
convl-512 §| conv3-512 Jf conv3-512
conv3-512
i i maxpool
Dropped Iocal reSponse normahzatlon (LRN) conv3-512 [ conv3-512 | conv3-512 [ conv3-512 j| conv3-512 W conv3-512
. IR . 3-512 3-512 3-512 3-512 3-512 3-512
Batch norm not invented yet! Pre-initialization of o o o convisi2 | comvasiz llcomasiz
deeper networks with weights from shallower cony3-512
architectures crucial to let training progress (unless maxpoot
smart initialization Strategles are used). FC-4006
FC-1000
soft-max

Karen Simonyan and Andrew Zisserman, “Very Deep Convolutional Networks for Large-scale Image Recognition”, ICLR 2015

T




Stages

VGG-16

VGG-19

D

E

VGG introduces the idea of designing a network as

repetitions of stages, i.e. a fixed combination of layers that
process activations at the same spatial resolution.

A=\

16 weight
layers

19 weight
layers

conv3-64
conv3-64

conv3-64
conv3-64

conv3-128
conv3-128

conv3-128
conv3-128

conv3-256
conv3-256
conv3-256

conv3-256
conv3-256
conv3-256
conv3-256

conv3-512
conv3-512
conv3-512

conv3-512 |
conv3-512
conv3-512
conv3-512

conv3-512
conv3-512
conv3-512

conv3-512
conv3-512
conv3-512
conv3-512

maxpool

maxpool

In VGG, stages are either: [ / /\ /
J o S
o CONV-CONV-pool /
& \
o CONV-CoNv-conv-pool [// L [
// l A \/ [ /
o CONV-CONV-CONV-CONV-POOl /| T / /
/| /T
One stage has same receptive field of larger convolutionsbut /7 [
requires less params and computation and introduces more
non-linearities.
No free-lunch, though: memory for activations doubles
Conv layer Params Flops RelLUs #Activations
CXCXx5%x5,S=1,P=2 25C%*+C  50C*W;,H;, 1 C X W;, X H;,
2stackedCxCx3x3,5S=1P=1 18C% +2C  36C*W;H;, 2 2XC X W, X Hyy

FC-4096

FC-4096

soft-max

soft-max




Residual Networks

VGG lesson: growing depth improves performance. Yet, stacking more layers doesn't automatically improve
performance.

Too many parameters increase overfitting and hurts generalization? We also observe higher training errors, so
overfitting It's not the only reason, there is also a training problem, even when using Batch Norm.

Yet, a solution exists by construction: if a network with 20 layers achieves performance X, then we can stack 36
more identity layers and we should keep performance at X.

SGD is not able to find this solution with the parameterization we use for layers: optimizing very deep networks

is hard.
56-layer

20-layer

]
(=]
]

20r

—
=]
T

training error (%)

test error (%)

(=3
(=1
—_

2 5 6 0 1 2 5 6

3 i
iter. (1e4)

Kaiming He et al., “Deep Residual learning for image recognition”, CVPR 2016

3 n
iter. (1e4)

41



Residual block

The proposed solution is to change the network so that learning identity functions is easy by introducing
residual blocks. Implemented by adding skip connections skipping two convolutional layers.

Weights usually
initialized to be very
small (or O for biases).
Network starts with
the identity function

X X
¥
ConvaD | and learns an “optimal”
Conv2D layer OflvZzL aycr
¥

Conv2D layer

Conv2D layer

perturbation of it.

@: 't makes heavy use of
batch-norm

H(x) F(x)+x




MSRA @ ILSVRC & COCO 2015 Competitions

ReS U |tS u p d ated * 1st places in all five main tracks

* ImageNet Classification: “Ultra-deep” (quote Yann) 152-layer nets

* ImageNet Detection: 16% better than 2nd
* ImageNet Localization: 27% better than 2nd

2 —_— e e . e e e e e e e e R S T RN NSRS O EEEERERee e e s e e = = = = =
0 * COCO Detection: 11% better than 2nd —TResNet-20
* COCO Segmentation: 12% better than 2nd ~=ResNet-32
—ResNet-44
= ResNet-56
. = ResNet-110
~ i —~ .'\'.\,
= 10— — — — — — — —'\="— = Ty = 10 — — Wl TV E NN - - g
@ AN 20-layer g '
) iy MY ©
df——plain-20] — ~ T T T 7 Y TN T T T T T S A
~plain-32 e VN
= plain-44 e N ST e
= plain-56 R D RN o T v s TN
0 T I 1 L 1 L 0 ks i v L, ST
0 1 2 3 4 5 6 0
iter. (1e4) iter. (1e4)

Residual blocks allow us to train deep networks. When properly trained, deep networks outperform shallower network as expected

Won all 2015 competitions by a large margin, still the standard baseline/backbone for most tasks today.




Transfer Learning

We normally want to run CNNs on new classification datasets, not on ImageNet.

One of the most important features, from a practical point of view, of learned representations is that they can
be effectively transferred to new datasets. Transfer learning is the process of usin dapting a pre-trained

and ada
NN to new datasets. Usually, we pre-train on large datasets, and then we use it as%rozen feature extractor or
fine-tune it on the new dataset.

Large dataset Small/new Small/new

(e.g. Imagenet1k/21k)

—E—

”
OR
Initialize E

dataset dataset




ODbject detection




Problem definition

Input: RGB Image of size W x H
Output: a set of “objects”.
For each object o;:

- category ¢; € [1, ..., C] (from a fixed list of

categories, as in image classification)
- bOUﬂdmg box BB] = [Xj,yj,Wj,hj],
Xj,Wj (S [O,W - 1], y],h] € [O,H - 1]

Challenges:
- output with variable length

- output with categorical (“what”’) as well as spatial
(“where”) information

- usually images processed at higher resolution than
in image classification to have enough details




Datasets

tvmonitorFrortal

.A Common Objects in Context
~¢ PA SCALZ

‘ ftern Ar 1\ s Statistica eling ang

earning

| ‘personTruncOCCncOcc Nl ==
: P

personTrunc
KRR
2]

train/val images: 118K/5K
80 categories

Trainval images: 11540 (27450 objects)
20 categories

http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html https://cocodataset.org



http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html
https://cocodataset.org/

Object localization

To see how deep CNNs we studied for image classification can be extended to the problem of object
detection, let’s first consider a simpler problem. If we can assume that only one object is present in the image,
object detection simplifies to object localization, i.e., predicting one class and one bounding box per image.

To solve it, we can reuse any of the architectures seen for image classification, adding a regression head
predicting the bounding box (i.e., 4 numbers) next to the standard classifier. Usually, the number of classes in
object detection is smaller than 1000, so we retrain also the FC layer of the classification head.

80
Feature extractor (aka backbone network) is 1024x7x7  1024x71xT TEEAX 1T Class é
usually pre-trained on ImageNet: Transfer Learning activations  activations ~ scores label out
FC-80 of T68Q 80
FC-1000 gug argmax REESEISS
e.g. bird

AXIx1
Rl 50 = ey

(BB©) = ||BB' ~ BBV, <

¢® BB® > 1D

loc

Total loss LW = CE (softmax(scores(i)), ]l(c(i))) + 2 LY (BB®) - Multi-task learning




Detecting Multiple Objects

ldea: we can apply a classification CNN as a sliding window detector

Problems:

1. we need a background class to discard background patches: how
should we train it? Add a background class when fine-tuning the network
on the detection dataset. Background patches are far more frequent: be
sure to include positive samples in the training mini-batch ie.g., 32 positive
boxes and 96 negative ones to reach 128 batch size). Total loss becomes:

Indicator function

L® = CE (softmax(scores),]](c(i))) + A 1[c® = bg]LE?C(EP(i))

2. there are too many boxes to try: fora w x h window, there are (W —w +
1) x (H — h + 1) possible positions, but we have to try all (or most of) the
scales and aspect ratios, hence

#windows = YW_ Y (W -w+1)x (H—-h+1)

_ HH+1D)WW+1)
2 2

Solution: use region proposals

= 0(W?H?)




Region proposals

Region proposal are classical computer
vision algorithms like Selective Search that
inspect the image and attempt to find
regions that likely contain an object.

't first oversegments the image into highly
uniform regions (i.e. “superpixels”).

Then, based on similarity scores of color,
texture and size iteratively aggregates them:
the two most similar regions are grouped
together, and new similarities are calculated
between the resulting region and its
neighbors, until the whole image becomes a
single region. Each aggregation is a region.

It aims for high recall but low precision
while drastically reducing the number of
boxes to be evaluated.

P. F. Felzenszwalb and D. P. Huttenlocher. Efficient Graph-Based Image Segmentation. [JCV 2004
Uijlings et al, “Selective Search for Object Recognition”, [JCV 2013

50




Faster R-CNN

Run expensive backbone feature  Region proposal network RolPool layer crops and Per-region network
extractor once on the full image generates proposals warps conv features computes output class
according to proposals and BB correction
3x600x800 61(1,)
256x36x49 > —>
AlexNet 'I 256x6%6 f1(i)
up to > 12
convo 3 F c“z(i)
> —>
256X6x6 fz(‘)
bg
RPN learns to predict > >
1. Proposal box STt \

2. "Objectness” score

Shaoging Ren et al,, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NeurIPS 2015.

51




One-stage detectors: simp

Run expensive backbone feature Region proposal
extractor once on the fullimage  network generates

proposals output

3x600x800

conv

ified view

Feature

extractor

First stage : run once per image
- Feature extractor
- "Region Proposal Network” that also classifies boxes

- R

Second gtage : run once per proposal

ool
er-region classification and correction

RolPool layer crops and Per-region networ
warps conv features computes outputlass

ascording to proposals and BB corpeCtion
61(1)

256XDXE £1(i)

. 112 B
62(1)
> mmg €Ji0N-

D56x6x6 fz(‘)




YOLOvV3

1x

2%

8x

8x

4x

It uses a custom backbone (DarkNet-53) optimized to have a
good trade-off between classification accuracy and speed.

It uses the idea of multi-scale detections on features with
different spatial resolutions, as in FPN. It concatenates
activations from different stages instead of summing them.

Predictions for 3 small

s Convs
- scale anchors

Upsample

J Predictions for 3 medium
scale anchors

Type Filters Size OQutput
Convolutional 32 3x3 256 x 256
Convolutional 64 3 x3/2 128 x 128
Convolutional 32 1 x1

Convolutional 64 3x3

Residual 128 x 128
Convolutional 128 3 x3/2 64 x64
Convolutional 64 1 x1

Convolutional 128 3 x3

Residual 64 x 64
Convolutional 256 3 x3/2 32x32
Convolutional 128 1 x 1

Convolutional 256 3 x3

Residual 32 x 32
Convolutional 512 3x3/2 16x 16
Convolutional 256 1 x 1

Convolutional 512 3 x3

Residual 16 x 16
Convolutional 1024 3 x3/2 8 x 8
Convolutional 512 1 x 1

Convolutional 1024 3 x 3

Residual 8 x 8
Avgpool Global

Connected 1000

Softmax

Predictions for 3 large
g Convs
scale anchors
Joseph Redmon et Ali Farhadi., “YOLO9000: better, faster, stronger”, CVPR 2017.

Joseph Redmon et Ali Farhadi., “YOLOv3: An Incremental Improvement”, arXiv 2018.
https://pjreddie.com/darknet/yolo/
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Comparison on COCO by GluonCV

Faster R-CNN w/ ResNeSt269 w/ FPN | @) ®
Faster R-CNN w/ ResNet101 vid “ A . ® YOLOv3 608x608
] ® CenterNet w/ ResNet101
- . YOLOvV3 416x416
[1_ 35 —
e ‘e YOLOV3 320x320
®
30 — e
o °
e
® center_net . o
| @ faster_rcnn °
® ssd
® yolo3
L]

L T T LN B B N B B |
10M 1042

#samples/sec

https://cv.gluon.ai/model_zoo/detection.htm]
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Semantic Segmentation




Problem definition

Input: RGB Image of size W X H

Output: a category c¢,,,, for each pixel p = (u, v), ¢y € [1, ..., C] (a fixed list of
categories, as in image classification)
u R - u




Datasets

|_2 Common Objects in Context
\od

cal v

enng anag

‘Q
%+ PASCA

1puignonal Learning

Trainval images: 11540 (6,929 segmentation masks)

20 categories train/val images: 118K/5K

>T100 categories

http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html https://cocodataset.org
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https://cocodataset.org/
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https://www.cityscapes-dataset.com/
https://groups.csail.mit.edu/vision/datasets/ADE20K/

Fully Convolutional Network (FCN)

CNN

backbone

3x256x320 512x6x8

v

21x256x320

Long et al, “Fully convolutional networks for semantic segmentation”, CVPR 2015.
Evan Shelhamer, et al., “Fully convolutional networks for semantic segmentation”, PAMI 2017.




Fully Convolutional Network (FCN)

Fix channels to be equal to number We need to convert coarse spatial
of classes C class scores into fine grained scores
with an upsampling operation

1x1 Convy,

C_out =21,
S=1, P=0

\ 4

5712x6x8 21x6x8 21x256x320

Long et al, “Fully convolutional networks for semantic segmentation”, CVPR 2015
R R R R




Upsampling

One way to perform upsampling can be to use standard, not-learned image processing operators

Bilinear interpolation

1

1.25

1.75

2

1.50

1.75

2.25

2.9

Input Nearest Neighbor
112 1111212
3|4 1111212
Cx2x2 3 3 A A

313]|4]|4

2.9

2.75

3.25

3.9

3.25

3.75

Cx4x4




FCN-32s

“Scoring” layer in FCN terminology: after this
layer, we have a score for each class, but at a

resolution that depends on the backbone stride
<
- 1x1 Convy, w
L5, IR C out =21 Bilinear
. e S_=1 on' . Upsampling x32
, :
ST12xH/32xW/32 21xH/32xW/32
W n v
SXHXW Fine-tuned

21xXHXW
Problem: without learning a non-linear upsampling transformation, we can only uniformly spread
the coarse info in the final convolutional activation, obtaining very coarse masks.

Solution: upsample multiple activations at different resolutions

Long et al, “Fully convolutional networks for semantic segmentation”, CVPR 2015.
Evan Shelhamer, et al., “Fully convolutional networks for semantic segmentation”, PAMI 2017.
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FCN-T16s

256XH/T6xXW/16 || 512xH/32xW/32 2TxH/32xW/32
4

2TxH/T6xW/16

f | CNN backbone —
=R . Bilinear
" wmmd UD tO Stage L — 1 scoring Unsamblin
' (total stride 16) pSampiing

3xHxW
The additional connections scoring Bilinear
between output and internal Upsampling
layers are referred to as skips.
FCN-16s has 1 skip. X 16X e

21xHXW

Long et al, “Fully convolutional networks for semantic segmentation”, CVPR 2015.
Evan Shelhamer, et al., “Fully convolutional networks for semantic segmentation”, PAMI 2017.
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2 A6 256XH/16XW/16 || 512xH/32xW/32 | | 21xH/32xW/32 21xH/16xW/16
\ 5 4 P P
; TARAY CNN ;
il | B backbone ,.' Bilinear
- (g UPIOSIAGE ﬁ@ Upsampling
/ | L-2
o . Bilinear
3XHXW 128xH/8xW/8 Sconng Upsampling
21xH/16xW/16 21xH/8xW/8
FCN-8s has 2 skips.
, R Bilinear
Upsampling
% 271XHXW

Long et al, “Fully convolutional networks for semantic segmentation”, CVPR 2015.
Evan Shelhamer, et al., “Fully convolutional networks for semantic segmentation”, PAMI 2017.
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U-net

| 64 64

It extends the idea of skips from FCNs Encoder oo

to create a full-fledged decoder, which |

has roughly a symmetric structure with | "2 | | oo, outout
respect to the encoder. tle "EEEE
Every activation produced by a stage EEE A Hs

of the backbone (or encoder, or H
“contracting path”) has a skip 11 255 125
connection with the corresponding
level of the decoder (or “expansive
path”).

+—>

284

2822

280
200
1982
196

¥ oo o 512 256 '

I E—- %[I?NIEI = CONnvV 3)(3l Rel U

Scoring layer only at the end to project
onto the desired number of classes

= copy and crop
1024 512

e %E- ’ ?- ¥ max pool 2x2
S ¥ oz 45 o 4 up-conv 2x2
%-'gr .."FS =» conv 1x1

Ronneberger et al.,, “U-Net: Convolutional Networks for Biomedical Image Segmentation”, MICCAI 2015




U-net

Skip connections use
concatenation instead of
summation as in FCN.

2x2 stride-2 transposed

convolutions (“up-convolutions”) ¥ 256 256 U |

are used to upsample the ol [I"I"I

activations in the decoder, while %8 3 Wl = conv 3x3, ReLU

halving the number of channels. ™ =7 7 | - - = copy and crop
512 512 1024 512

Normal 3x3 convolutions are il — -l ¥ max pool 2x2

used in the decoder as well: with € ¥ 4B B # up-conv 2x2

further processing, even initial %-';_'OE_ => conv 1x1

IaTyers of the backbone can
effectively contribute to the final
segmentation mask, as opposed
to what happened in FCN.

Ronneberger et al.,, “U-Net: Convolutional Networks for Biomedical Image Segmentation”, MICCAI 2015




Unet - results




Recent topics




Supervised learning is great but...

Labels are expensive

SATASET ;’;25:?& - ImageNet 271k took 22 human years, and it

‘only” contains 21k concepts

Ground-truth is a convenient fiction

ImageNet

-Sometimes labels are ambiguous

-Not all the visual tasks allow for easy
collection of labels




s far from perfect...

“airliner”

Performance of supervised methods is brittle: for instance, there exist adversarial examples, i.e.

images that are wrongly classified when they are imperceptibly modified for humans

Explaining and Harnessing Adversarial Examples”. ICLR 2015

“«

lan J. Goodfellow et al. :




.. and overfits the benchmarks (lack “common sense”)

Distribution Shift to ImageNetV2

60 65 70 75 80 85

ImageNet V2 A80
X
.75
(7o)
. > = : y a
- | < 37.7% =
ImageNet Rendition 860
Q L~
%55
] £ 50
45

: ‘ ImageNet (top-1, %)
ObjectNet
A I =
S o = | 25.2%
ImageNet Sketch Taori et al., “Measuring Robustness to Natural Distribution Shifts in Image Classification”, NeurlPS 2020.




Self-supervised learning

0 'e;vcs:i
| Obj
ConvNet L Maximize prob. ‘
. | i----i e glX,y=0) > model F() > Fx) -‘
.
xa m p e ° Rotate 0 degrees | Predict 0 degrees rotation (y=0)
l : Rotated image: X" | 2 &
[ Sl ConyNet Maximize prob.
l----' —» g(X,y=1) —> > model F()) I FI(XI) |
l Rotate 90 degrees Predict 90 degrees rotation (y=1) |
' Rotated image: X'
I [ |
‘ | ConvNet Maximize prob. |
l—---' > g(X,y=2) e F() > F(X%) ’
Image X Rotate 180 degrees - ) | Predict 180 degrees rotation (y=2) ‘
l ' Rotated image: X~
i I | |
R ‘
W S —— W ————————————— > (X—3)—> 4>C°nVNCt~ ! »Maximizeprob.
g\, y= model F(.) F(x}) ‘
Rotate 270 degrees

| ; ;
Rotated image: X° Pred{ct 270 degrees mt?t,l,on (y=3) J

(@ ' B o) ' e HN

S. Gidaris, P. Singh, and N. Komodakis, “Unsupervised representation learning by predicting image rotations” in ICLR 2018.
Doersch et al. “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015
M. Noroozi and P. Favaro, “Unsupervised learning of visual representations by solving jigsaw puzzles”, ECCV 2016.
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Self-supervised Pretext Task Training
Unlabeled Dataset

Self-supervised learning

« When used to learn effective representations to
bootstrap/improve supervised learning,
unsupervised learning is (often) referred to as
self-supervised learning.

« “Self-supervised learning is a subset of

unsupervised learning methods [...] in which Knowledge Transfer
[neural networks] are explicitly trained with ” Supervised Downstream Task Training
automatically generated labels (pseudo-labels). Labeled Dataset

Downstream
Task

« The task solved while performing self-
supervised learning is often referred to as
pretext task = .

Longlong Jing and Yingli Tian, “Self-supervised Visual Feature Learning with Deep Neural Networks: A Survey”, https://arxiv.org/abs/1902.06162



https://arxiv.org/abs/1902.06162

Self-supervision by contrastive learning

(b) Crop and resize

State-of-the-art self-supervised methods
are closing the gap with respect to the
supervised counterpart in some tasks.

(c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter)

% Supervised ___.__“_____.._......-.--*SimCLR (4x)
T ~_KSimCLR (2x)
9) eCPCv2-L
c 70F
| 5 *SimCLR e ‘MoGo’(«ﬂfx)
, , : ; : , ke ePIRL-c2x
() Rotate {90°, 180°,270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering 1 oMoCo ( 2)(} AMDIM
— 65 -
Maxim & QCPC\Q PIRL-ens.
. aximize agreement 5, |9 PIRL HioBIGAN
g g eBigBi
0 o) 3 eof 80 ’
g 9 S LA
hi +— Representation —+ h; g .
E 554 eRotation
e|nstDisc
—b—————————
25 50 100 200 400 626

Number of Parameters (Millions)

Ting Chen et al., “A Simple Framework for Contrastive Learning of Visual Representations”, ICML 2020
Ting Chen et al., “Big Self-Supervised Models are Strong Semi-Supervised Learners”, NeurlPS 2020




SSL is the “dark matter” of Al

Supervised learning is a bottleneck for building more intelligent generalist models that can do multiple tasks and
acquire new skills without massive amounts of labeled data. [...]

A working hypothesis is that generalized knowledge about the world, or common sense, forms the bulk of biological
intelligence in both humans and animals. This common sense ability is taken for granted in humans and animals but
has remained an open challenge in Al research since its inception. In a way, common sense is the dark matter of
artificial intelligence.

Common sense helps people learn new skills without requiring massive amounts of teaching for every single task. For
example, if we show just a few drawings of cows to small children, they’ll eventually be able to recognize any cow they
see. By contrast, Al systems trained with supervised learning require many examples of cow images and might still fail
to classify cows in unusual situations, such as lying on a beach. How is it that humans can learn to drive a car in about
20 hours of practice with very little supervision, while fully autonomous driving still eludes our best Al systems trained
with thousands of hours of data from human drivers? The short answer is that humans rely on their previously
acquired background knowledge of how the world works.

How do we get machines to do the same? We believe that self-supervised learning (SSL) is one of the most promising
ways to build such background knowledge and approximate a form of common sense in Al systems.

https://ai.facebook.com/blog/self-supervised-learning-the-dark-matter-of-intelligence/
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Self-supervised learning in NLP

Self-supervised learning is routinely used in Natural Language Processing to learn language
models, i.e. probability for the next word in a sentence.

| can't wait to go to the

gym

Why is language modelling a good pretext task?

She went into the cafe to get some coffee. When she
walked out of. :

Semantics Syntax

http://cs229.stanford.edu/notes?2021spring/notes2021spring/cs229_lecture_selfsupervision_final.pdf
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Transformers

Qutput
Probabilities
L4
Attention Is All You Need
((oieiom)—
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Forward
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Multi-Head . . o .
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Ashish Vaswani et al., “Attention Is All You Need”, NIPS 2017.




Vision Transformer (ViT)

Transformer Encoder

A

Vision Transformer (ViT)

%

MLP
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MLP

i
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Transformer Encoder
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A. Dosovitskiy et al., “An Image Is Worth 16X16 Words: Transformers for Image Recognition At Scale”, ICLR 2020.




Transformers everywhere

Self-Attention in Vision Models

(§3)

Single-Head

Self-Attention (53.1)

- Mon-local attention
- Criss-cross attention

- Local relation nets

Artention

" Augmented CNN

stand-alone
primitive (§3.1.2)

Stand-alone self
attention

Vecror artention

Multi-Head Self-Attention

(Vision Transformers §3.2)

Uniform-scale
ViTs (§3.2.1)

- Vision Transformer

Data Efficient

" Transformer
Token to Token

Transformer

Transformer in
L

Transformer
Cross-Covariance

" Image Transformers

- Pyramid ViT
- SegFormer
- Swin Transformer

= CrossFormer

L Focal Transformer

Hybrid ViTs with

Convolutions
153.2.3)
Conv. Vision

[ Transformer
Compact Conv.

| Transformer
- Local WiT

- LeViT

L ResT, NesT

DING

MoCo w3

EsViT

Problem Settings

Image Recognition (§3.1 & §3.2)

Object Detection (§3.3)
Semantic Segmentation (§3.4)
Image Generation (§3.5)
Low-level Vision (§3.6)
Multi-modal Tasks (§3.7)
Video Understanding (§3.8)

Low-shot Learning (§3.9)

Clustering (§3.10)

3D Analysis (§3.11)

Khan et al., “Transformers in Vision: A Survey”, arXiv 2021.
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CLIP (Contrastive Language—Image Pre-training)

(1) Contrastive pre-training (2) Create dataset classifier from label text

Pepper the ||| ﬁ
i > L & photo of Text
FHEeRT P Encoder l i l l M 2 (object]. > Encoder
L
I " s
T, | T, | T3 | .. | Tn

» LTy | Ty | Ty I Ty -
(3) Use for zero-shot prediction v v v ¥
T — I 1Ty | Ty | 1Ty [Ty T T, Ts . Ty
Image } > 1 13T | 3Ty | IyT I3-T |
Encoder g 3T 302 ) - |3N Image I; LTy | Ty | Ty | L [Ty
Encoder
> Iy Ty | IyTy | IyTy Iy Ty A photo of
a dod.

A. Radford et al,, “Learning Transferable Visual Models From Natural Language Supervision”, ICML 2021




CLIP — Results and beyond

IMAGENET
DATASET RESNET101

CLIPVIT-L

76.2%

ImageNet Rendition

Y

ObjectNet

Do IL T

ImageNet Sketch

=4

ImageNet Adversarial

76.2%

70.1%

88.9%

72.3%

60.2%

77.1%

Prompt: “Colourful cubist painting of a parrot in a cage”

https://openai.com/blog/clip/
https://creator.nightcafe.studio/text-to-image-art
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