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What is Computer Vision?

The science (and art) of making computers gain a high-level understanding 
of images (and videos, and 3D data, and ...)

Example credit:  Andrej Karpathy
https://karpathy.github.io/2012/10/22/state-of-

computer-vision/ 
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https://karpathy.github.io/2012/10/22/state-of-computer-vision/
https://karpathy.github.io/2012/10/22/state-of-computer-vision/


Why is it important?
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What does an image tell you?

3D structure, place classification
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What does an image tell you?

Interesting “objects”
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What does an image tell you?

Object boundaries
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What does an image tell you?

Relative depth placement
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What does an image tell you?

Named entity recognition
President 
Obama
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What does an image tell you?

A story
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The previous slide has not aged well…

https://twitter.com/inoryy/status/1522621712382234624 
https://www.deepmind.com/blog/tackling-multiple-tasks-with-a-single-visual-language-model
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https://twitter.com/inoryy/status/1522621712382234624
https://www.deepmind.com/blog/tackling-multiple-tasks-with-a-single-visual-language-model


…or has it?

…but….
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https://twitter.com/geoffreyirving/status/1522669461278539777 

https://twitter.com/geoffreyirving/status/1522669461278539777


RGB images are tensors in a computer
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Moravec’s 
paradox
Moravec wrote in 1988, "it is 
comparatively easy to make 
computers exhibit adult level 
performance on intelligence 
tests or playing checkers, and 
difficult or impossible to give 
them the skills of a one-year-old 
when it comes to perception and 
mobility"

13



Computer vision is (was?) hard

https://xkcd.com/1425/ 
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https://xkcd.com/1425/


Image Classification

Output
Choose among 
these categories

Dog
Cat
Bird
Frog
Person

Input
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Some challenges

General weirdness of the world…Viewpoint variations

Occlusions
Intraclass variations Background clutter

Illumination changes
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Categories as numbers

𝑓 = 2
0 -> Dog
1 -> Cat
2 -> Bird
3 -> Frog
4 -> Person
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Birds…

Traditional Computer Vision techniques, e.g. handcrafted rules based on edges, need a controlled 
environment, usually feasible in industrial vision applications, otherwise they are very brittle.
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(Supervised) Machine learning to the rescue

𝑓 = 2

Dog

Cat

Bird

…

…

…
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Machine learning or data-driven approach

We can think of machine learning as a new way to instruct computers about what we want them to do.

Example
 Inputs

Example 
Outputs

Black box 
«program»

(New) Inputs

(New) Outputs

Cat, Dog, …

Training (aka learning, optimization)

Testing (aka inference, prediction)
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CIFAR 10

Subset of the 80 million Tiny Images 
dataset

https://www.cs.toronto.edu/~kriz/cifar.ht
ml

10 classes

50k training images

10k testing images

32x32 RGB images

Learning Multiple Layers of Features from Tiny Images, Alex Krizhevsky, 2009.
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https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf


CIFAR 100

Another subset of the 80 million Tiny Images 
dataset

100 classes

50k training images (500 per class)

10k testing images (100 per class)

32x32 RGB images

Hierarchical structure: 20 super-classes with 5 sub-
classes each

Learning Multiple Layers of Features from Tiny Images, Alex Krizhevsky, 2009.
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https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf


ImageNet / ImageNet 21k

14 millions RGB images at full and variable resolution with average size about 400 × 350.

Hierarchical structure: modelled on about 21k synsets from WordNet (out of 50k)

Deng et al, “ImageNet: A Large-Scale Hierarchical Image Database”, CVPR 2009
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Linear classifier

𝑓 𝒙 = ; 𝜃 = 2

𝑓 𝒙; 𝑾 = 𝑾𝒙 = 𝒔𝒄𝒐𝒓𝒆𝒔

32x32x3=3072x1 CIFAR image 10x110x3072

2
𝑎𝑟𝑔𝑚𝑎𝑥

0 (plane) 45.4

1 1 (car) 128.3

2 (bird) 253

… 0.23

-1.34

4

-56

-63

78

2
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𝒂𝒌𝒂 𝒍𝒐𝒈𝒊𝒕𝒔



What does a linear model learn?

Accuracy about 38% on CIFAR10

Let’s use the template matching 
interpretation of a linear classifier to 
understand what the model is learning 

It looks like the background color is the 
predominant feature used by the model

Moreover, one template cannot capture 
multiple appearances within one class, 
e.g. rotated cars, trucks, etc..

Distance between templates and 
images is still a distance in input space, 
same problem we had with k-NN 
classifier, and performance is similar
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Representation is important

Switch to polar 
coordinates

𝜌 = 𝑥1
2 + 𝑥2

2

𝜃 = tan−1 𝑥2

𝑥1
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𝑥1

𝑥2 𝜃

𝜌

Linear decision boundary 
in feature space

Non-linear decision 
boundary in input space



Representation learning

Deep learning ≈ Representation learning
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Convolutions 

In traditional image processing and computer vision, we usually rely on convolution/correlation with 
hand-crafted filters (kernels) to process images (e.g. denoise or detect local features).
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oUnlike linear layers, in a convolution, the input and output are not 
flattened, i.e. convolution preserves the spatial structure of images.

o Unlike linear layers, a convolution processes only a – small – set of 
neighboring pixels at each location. In other words, each output unit is 
connected only to local input units. This realizes a so called local 
receptive field.​

o Unlike linear layers, the parameters associated with the connections 
between an output unit and its input neighbors are the same for all 
output units. Thus, parameters are said to be shared and the 
convolution seamlessly learns the same detector, regardless of the 
input position.

Convolutions embody inductive biases dealing with the structure of images: images exhibit 
informative local patterns that may appear everywhere across an image.



Convolution - animation

29

https://colab.research.google.com/github/GokuMohandas/Made-With-ML/blob/main/notebooks/11_Convolutional_Neural_Networks.ipynb 

https://colab.research.google.com/github/GokuMohandas/Made-With-ML/blob/main/notebooks/11_Convolutional_Neural_Networks.ipynb


Multiple input channels

Images have 3 channels, so convolution kernels will be a 3-dimensional tensors of size 3 × 𝐻𝐾 × 𝑊𝐾 and

𝐾 ∗ 𝐼 𝑗, 𝑖 = ෍

𝑛=1

3

෍

𝑚

෍

𝑙

𝐾𝑛 𝑚, 𝑙 𝐼𝑛 𝑗 − 𝑚, 𝑖 − 𝑙 + 𝒃
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Filter or kernel, 
e.g. 𝟑 × 𝟓 × 𝟓

Input image, 
e.g. 𝟑 × 𝟑𝟐 × 𝟑𝟐

Filters and input depth always match, and the third dimension of a filter 
is usually implicit, i.e. we define this as a “5 by 5 convolution”, but it has 
5 × 5 × 3 = 75 parameters (76 with the bias), not 25

This is still a 2D convolution, but 
over vector-valued functions, not 
a 3D convolution (notice we do 
not slide over channels)

As usual, we actually 
compute an affine 
function, so we also have a 
bias term



Output activation

𝐾 ∗ 𝐼 𝑗, 𝑖 = ෍

𝑛=1

3

෍

𝑚

෍

𝑙

𝐾𝑛 𝑚, 𝑙 𝐼𝑛 𝑗 − 𝑚, 𝑖 − 𝑙 + 𝑏
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Filter or kernel, 
e.g. 𝟑 × 𝟓 × 𝟓

Input image, 
e.g. 𝟑 × 𝟑𝟐 × 𝟑𝟐

Output activation, 
e.g. 𝟏 × 𝟐𝟖 × 𝟐𝟖

By sliding the filter over the 
image, we get a single-valued 
output image, which is the 
output activation

It is also called feature map, 
activation map, etc…When the filter is at 

position (𝑗, 𝑖) on the 
input image, we 
compute one number



Activation

We can repeat it with a second filter, with different weights, e.g. a filter that detects horizontal edges 
instead of vertical ones

𝑲(𝟐) ∗ 𝐼 𝑗, 𝑖 = ෍

𝑛=1

3

෍

𝑚

෍

𝑙

𝑲𝒏
(𝟐)

𝑚, 𝑙 𝐼 𝑗 − 𝑚, 𝑖 − 𝑙 + 𝒃(𝟐)
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Filter or kernel, 
e.g. 𝟑 × 𝟓 × 𝟓

Input image, 
e.g. 𝟑 × 𝟑𝟐 × 𝟑𝟐

Output activation, 
e.g. 𝟐 × 𝟐𝟖 × 𝟐𝟖



Convolutional layer

Convolutional layer

If we have 4 filters, each of size  𝟑 × 𝟓 × 𝟓, we can describe the overall operation realized by the layer as

𝐾 ∗ 𝐼 𝑘 𝑗, 𝑖 = ෍

𝑛=1

3

෍

𝑚

෍

𝑙

𝑲𝒏
(𝒌)

𝑚, 𝑙 𝐼 𝑗 − 𝑚, 𝑖 − 𝑙 + 𝑏(𝑘) 𝑘 = 1, … , 4
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Input image, 
e.g. 𝟑 × 𝟑𝟐 × 𝟑𝟐

Output activation, 
e.g. 𝟒 × 𝟐𝟖 × 𝟐𝟖

Conv 2D filter 
e.g. 𝟒 × 𝟑 × 𝟓 × 𝟓

𝐾(1)

𝑏(1)
𝐾(2)

𝑏(2)
𝐾(3)

𝑏(3)
𝐾(4)

𝑏(4)



2D Convolutional layer

Convolutional layer

In the general case, we compute 𝑪𝒐𝒖𝒕 convolutions between vector-valued kernels and input activations

𝐾 ∗ 𝐼 𝑘 𝑗, 𝑖 = ෍

𝑛=1

𝐶𝑖𝑛

෍

𝑚

෍

𝑙

𝐾𝑛
(𝑘)

𝑚, 𝑙 𝐼𝑛 𝑗 − 𝑚, 𝑖 − 𝑙 + 𝑏(𝑘) 𝑘 = 1, … , 𝐶𝑜𝑢𝑡
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Input activation 
𝑪𝒊𝒏 × 𝑯𝒊𝒏 × 𝑾𝒊𝒏

Output activation 
𝑪𝒐𝒖𝒕 × 𝑯𝒐𝒖𝒕 × 𝑾𝒐𝒖𝒕

Conv 2D filter 
𝑪𝒐𝒖𝒕 × 𝑪𝒊𝒏 × 𝑯𝑲 × 𝑾𝑲

…

𝐾(1)

𝑏(1)
𝐾(2)

𝑏(2)
𝐾(3)

𝑏(3)
𝐾(𝐶𝑜𝑢𝑡)

𝑏(𝐶𝑜𝑢𝑡)

… …



Convolutional Neural Networks
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2D Conv

Max-Pool

ReLU

𝑁 convolutional+pooling layers followed by 𝑀 linear layers 
This is also called the feature extractor

𝑟3 𝑟4 𝑠
flatten

The final linear 
layer is also 
called the 
classifier

2D Conv

Max-Pool

ReLU
𝑟2𝑟1



ILSVRC error rate evolution
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28,1

25,8

16,4

11,7

7,4
6,7

3,6 3,03
2,3

0

5

10

15

20

25

30

2010 2011 2012
(AlexNet)

2013
(ZFNet)

2014
(VGG)

2014
(Inception-v1)

2015
(ResNet)

2016
(ResNeXt)

2017
(SENet)

ILSVRC Top-5 error rate

Successful architectures*

*Results based on ensembles and, sometimes, heavy test-time augmentation



AlexNet
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Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks”, NeurIPS 2012

5 convolutional layers (conv+relu) optionally followed by max-pooling 3 fc layers

Group convolutions to split load across GPUs



AlexNet

Won ILSVRC 2012.

Was trained on two GTX580 GPUs.

Used local response normalization (LRN) in 
some layers, not used in subsequent 
architectures.

Took between five and six days to train

“All our experiments suggest that our results 
can be improved simply by waiting for faster 
GPUs and bigger datasets to become 
available.”
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Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks”, NeurIPS 2012



VGG: Deep but regular

Second place in ILSVRC 2014, 7.5% top-5 error

Commit to explore the effectiveness of simple design 
choices, by allowing only the combination of :

o 3x3 convolutions, S=1, P=1

o 2x2 max-pooling, S=2, P=0

o #channels doubles after each pool

Dropped local response normalization (LRN)

Batch norm not invented yet! Pre-initialization of 
deeper networks with weights from shallower 
architectures crucial to let training progress (unless 
smart initialization strategies are used).
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VGG-16 VGG-19

Karen Simonyan and Andrew Zisserman, “Very Deep Convolutional Networks for Large-scale Image Recognition”, ICLR 2015



Stages

VGG introduces the idea of designing a network as 
repetitions of stages, i.e. a fixed combination of layers that 
process activations at the same spatial resolution.

In VGG, stages are either:

o conv-conv-pool

o conv-conv-conv-pool

o conv-conv-conv-conv-pool

One stage has same receptive field of larger convolutions but 
requires less params and computation and introduces more 
non-linearities.

No free-lunch, though: memory for activations doubles
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Conv layer Params Flops ReLUs #Activations

𝐶 × 𝐶 × 5 × 5 , 𝑆 = 1, 𝑃 = 2 25𝐶2 + 𝐶 50𝐶2𝑊𝑖𝑛𝐻𝑖𝑛 1 𝐶 × 𝑊𝑖𝑛 × 𝐻𝑖𝑛 

2 stacked 𝐶 × 𝐶 × 3 × 3, 𝑆 = 1, 𝑃 = 1 18𝐶2 + 2𝐶 36𝐶2𝑊𝑖𝑛𝐻𝑖𝑛 2 2 × 𝐶 × 𝑊𝑖𝑛 × 𝐻𝑖𝑛 

VGG-16 VGG-19



Residual Networks

VGG lesson: growing depth improves performance. Yet, stacking more layers doesn’t automatically improve 
performance.

Too many parameters increase overfitting and hurts generalization? We also observe higher training errors, so 
overfitting it’s not the only reason, there is also a training problem, even when using Batch Norm.

Yet, a solution exists by construction: if a network with 20 layers achieves performance X, then we can stack 36 
more identity layers and we should keep performance at X. 

SGD is not able to find this solution with the parameterization we use for layers: optimizing very deep networks 
is hard. 
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Kaiming He et al., “Deep Residual learning for image recognition”, CVPR 2016



Residual block

The proposed solution is to change the network so that learning identity functions is easy by introducing 
residual blocks. Implemented by adding skip connections skipping two convolutional layers. 
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Weights usually 
initialized to be very 
small (or 0 for biases).
Network starts with 
the identity function 
and learns an “optimal” 
perturbation of it.

It makes heavy use of 
batch-norm

Conv2D layer

Conv2D layer

ReLU

ReLU

𝒙

𝑯(𝒙)

BN

BN

Conv2D layer

Conv2D layer

ReLU

ReLU

𝒙

𝑭 𝒙 + 𝒙

BN

BN

+



Results updated

Residual blocks allow us to train deep networks. When properly trained, deep networks outperform shallower network as expected

Won all 2015 competitions by a large margin, still the standard baseline/backbone for most tasks today.
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Transfer Learning
We normally want to run CNNs on new classification datasets, not on ImageNet. 

One of the most important features, from a practical point of view, of learned representations is that they can 
be effectively transferred to new datasets. Transfer learning is the process of using and adapting a pre-trained 
NN to new datasets. Usually, we pre-train on large datasets, and then we use it as frozen feature extractor or 
fine-tune it on the new dataset. 
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Object detection



Problem definition

Input: RGB Image of size 𝑊 × 𝐻

Output: a set of “objects”.

For each object o𝑗 :

- category 𝑐𝑗 ∈ [1, … , 𝐶] (from a fixed list of 
categories, as in image classification)

- bounding box 𝐵𝐵𝑗 = 𝑥𝑗 , 𝑦𝑗 , 𝑤𝑗 , ℎ𝑗 ,

𝑥𝑗 , 𝑤𝑗 ∈ 0, 𝑊 − 1 , 𝑦𝑗 , ℎ𝑗 ∈ [0, 𝐻 − 1]

Challenges:

- output with variable length

- output with categorical (“what”) as well as spatial 
(“where”) information 

- usually images processed at higher resolution than 
in image classification to have enough details
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𝒙

𝒚
𝑥𝑗 , 𝑦𝑗

𝑤𝑗

ℎ𝑗

𝑊

𝑯

𝑐𝑗



Datasets
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http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html 

Trainval images: 11540 (27450 objects)
20 categories

train/val  images: 118K/5K
80 categories

https://cocodataset.org/ 

http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html
https://cocodataset.org/


Object localization

To see how deep CNNs we studied for image classification can be extended to the problem of object 
detection, let’s first consider a simpler problem. If we can assume that only one object is present in the image, 
object detection simplifies to object localization, i.e., predicting one class and one bounding box per image.

To solve it, we can reuse any of the architectures seen for image classification, adding a regression head 
predicting the bounding box (i.e., 4 numbers) next to the standard classifier. Usually, the number of classes in 
object detection is smaller than 1000, so we retrain also the FC layer of the classification head.

48

Class Ƹ𝑐 
label out 
of 1000 
classes
e.g. bird

Global Pool

1024x7x7
activations

FC-1000

1024x1x1
activations

1000x1x1
scores

argmax

෢𝐵𝐵(𝑖) = (𝑥, 𝑦, 𝑤, ℎ)
4x1x1

FC-4

𝐿𝑙𝑜𝑐
𝑖

( ෢𝐵𝐵(𝑖)) = ෢𝐵𝐵𝑖 − 𝐵𝐵 𝑖
2

2
𝑐(𝑖), 𝐵𝐵(𝑖)

80

80

Total loss 𝐿(𝑖) = 𝐶𝐸 softmax(𝑠𝑐𝑜𝑟𝑒𝑠(𝑖)), 𝕝 𝑐(𝑖) + 𝜆 𝐿𝑙𝑜𝑐
𝑖 ෢𝐵𝐵 𝑖 → Multi-task learning

Feature extractor (aka backbone network) is 
usually pre-trained on ImageNet: Transfer Learning

FC-80



Detecting Multiple Objects
Idea: we can apply a classification CNN as a sliding window detector

Problems:

1. we need a background class to discard background patches: how 
should we train it? Add a background class when fine-tuning the network 
on the detection dataset. Background patches are far more frequent: be 
sure to include positive samples in the training mini-batch (e.g., 32 positive 
boxes and 96 negative ones to reach 128 batch size). Total loss becomes:

𝐿(𝑖) = 𝐶𝐸 softmax(𝑠𝑐𝑜𝑟𝑒𝑠), 𝕝 𝑐(𝑖) + 𝜆 𝐼[𝑐 𝑖 ≠ 𝑏𝑔]𝐿𝑙𝑜𝑐
𝑖 ෢𝐵𝐵 𝑖

2. there are too many boxes to try: for a 𝑤 × ℎ window, there are (
)

𝑊 − 𝑤 +
1 × 𝐻 − ℎ + 1  possible positions, but we have to try all (or most of) the 
scales and aspect ratios, hence

#𝑤𝑖𝑛𝑑𝑜𝑤𝑠 = σ𝑤=1
𝑊 σℎ=1

𝐻 𝑊 − 𝑤 + 1 × 𝐻 − ℎ + 1

=
𝐻 𝐻+1

2

𝑊 𝑊+1

2
= 𝑂 𝑊2𝐻2

Solution: use region proposals

49

Indicator function



Region proposals

Region proposal are classical computer 
vision algorithms like Selective Search that 
inspect the image and attempt to find 
regions that likely contain an object.

It first oversegments the image into highly 
uniform regions (i.e. “superpixels”). 

Then, based on similarity scores of color, 
texture and size iteratively aggregates them: 
the two most similar regions are grouped 
together, and new similarities are calculated 
between the resulting region and its 
neighbors, until the whole image becomes a 
single region. Each aggregation is a region.

It aims for high recall but low precision 
while drastically reducing the number of 
boxes to be evaluated.
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P. F. Felzenszwalb and D. P. Huttenlocher. Efficient Graph-Based Image Segmentation. IJCV 2004 
Uijlings et al, “Selective Search for Object Recognition”, IJCV 2013



Faster R-CNN
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fc6+fc7

AlexNet 
up to 
conv5

FC-81

FC-4 Ƹ𝑡1
(𝑖)

Ƹ𝑐1
(𝑖)

FC-81

FC-4 Ƹ𝑡2
(𝑖)

Ƹ𝑐2
(𝑖)

FC-81

FC-4 \

𝑏𝑔

RoIPool layer crops and 
warps conv features 

according to proposals

3

21

fc6+fc7

256x6x6

fc6+fc7

256x36x49

3x600x800

Run expensive backbone feature 
extractor once on the full image

Per-region network 
computes output class 

and BB correction

256x6x6

256x6x6

Shaoqing Ren et al., “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NeurIPS 2015.

RPN

Region proposal network 
generates proposals

RPN learns to predict
1. Proposal box
2. “Objectness” score



Second stage : run once per proposal
- RoI Pool
- Per-region classification and correction

One-stage detectors: simplified view
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Per-
region 

net
Conv

Feature 
extractor

FC-81

FC-4 Ƹ𝑡1
(𝑖)

Ƹ𝑐1
(𝑖)

FC-81

FC-4 Ƹ𝑡2
(𝑖)

Ƹ𝑐2
(𝑖)

RoIPool layer crops and 
warps conv features 

according to proposals

21

Per 
region-

net

256x36x49

3x600x800

Run expensive backbone feature 
extractor once on the full image

Per-region network 
computes output class 

and BB correction

256x6x6

256x6x6

RPN

Region proposal 
network generates 
proposals output

First stage : run once per image
- Feature extractor
- “Region Proposal Network” that also classifies boxes



YOLOv3
It uses a custom backbone (DarkNet-53) optimized to have a 
good trade-off between classification accuracy and speed.

It uses the idea of multi-scale detections on features with 
different spatial resolutions, as in FPN. It concatenates 
activations from different stages instead of summing them.

53

Joseph Redmon et Ali Farhadi., “YOLO9000: better, faster, stronger”, CVPR 2017.
Joseph Redmon et Ali Farhadi., “YOLOv3: An Incremental Improvement”, arXiv 2018.

https://pjreddie.com/darknet/yolo/ 

C

Convs Convs

Convs

Convs
Predictions for 3 small 
scale anchors

Predictions for 3 medium 
scale anchors

Predictions for 3 large 
scale anchors

Upsample

Upsample

C

https://pjreddie.com/darknet/yolo/


Comparison on COCO by GluonCV

54

https://cv.gluon.ai/model_zoo/detection.html 

YOLOv3 320x320

YOLOv3 416x416

YOLOv3 608x608Faster R-CNN w/ ResNet101 v1d

Faster R-CNN w/ ResNeSt269 w/ FPN

CenterNet w/ ResNet101

https://cv.gluon.ai/model_zoo/detection.html


Semantic Segmentation



Problem definition

Input: RGB Image of size 𝑊 × 𝐻

Output: a category 𝑐𝑢𝑣 for each pixel 𝑝 = (𝑢, 𝑣), 𝑐𝑢𝑣 ∈ [1, … , 𝐶]  (a fixed list of 
categories, as in image classification)

56

𝒖

𝒗

𝒖

𝒗



Datasets

57

http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html 

Trainval images: 11540 (6,929 segmentation masks)
20 categories

train/val  images: 118K/5K
>100 categories

https://cocodataset.org/ 

http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html
https://cocodataset.org/


Datasets

58

train/val  images: 2750/500
30 categories, 19 usedhttps://www.cityscapes-dataset.com/ https://groups.csail.mit.edu/vision/datasets/ADE20K/ 

train/val  images: 25K/2K
150 categories

https://www.cityscapes-dataset.com/
https://groups.csail.mit.edu/vision/datasets/ADE20K/


Fully Convolutional Network (FCN)

59

Long et al, “Fully convolutional networks for semantic segmentation”, CVPR 2015.
Evan Shelhamer, et al., “Fully convolutional networks for semantic segmentation”, PAMI 2017.

CNN 
backbone

3x256x320 512x6x8 21x256x320

?



Fully Convolutional Network (FCN)

60

Long et al, “Fully convolutional networks for semantic segmentation”, CVPR 2015

512x6x8 21x256x320

1x1 Conv, 
C_out =21,  
S=1, P=0

21x6x8

?

We need to convert coarse spatial 
class scores into fine grained scores 

with an upsampling operation

Fix channels to be equal to number 
of classes 𝐶



Upsampling

One way to perform upsampling can be to use standard, not-learned image processing operators

61

1 2

3 4

1 1 2 2

1 1 2 2

3 3 4 4

3 3 4 4

1 1.25 1.75 2

1.50 1.75 2.25 2.5

2.5 2.75 3.25 3.5

3 3.25 3.75 4

Input

Cx2x2

Cx4x4

Nearest Neighbor Bilinear interpolation

Cx4x4



FCN-32s

Problem: without learning a non-linear upsampling transformation, we can only uniformly spread 
the coarse info in the final convolutional activation, obtaining very coarse masks.

Solution: upsample multiple activations at different resolutions
Long et al, “Fully convolutional networks for semantic segmentation”, CVPR 2015.

Evan Shelhamer, et al., “Fully convolutional networks for semantic segmentation”, PAMI 2017.

CNN 
backbone with 
total stride 32

1x1 Conv, 
C_out =21,  
S=1, P=0

Bilinear 
Upsampling x32

“Scoring” layer in FCN terminology: after this 
layer, we have a score for each class, but at a 

resolution that depends on the backbone stride

3xHxW

512xH/32xW/32 21xH/32xW/32

21xHxW

62

Fine-tuned



FCN-16s

The additional connections 
between output and internal 
layers are referred to as skips.

FCN-16s has 1 skip.

63

Long et al, “Fully convolutional networks for semantic segmentation”, CVPR 2015.
Evan Shelhamer, et al., “Fully convolutional networks for semantic segmentation”, PAMI 2017.

CNN backbone
up to stage 
(total stride 16)

scoring
Bilinear 

Upsampling x2
Stage 

scoring + Bilinear 
Upsampling x16

256xH/16xW/16 512xH/32xW/32 21xH/32xW/32 21xH/16xW/16

21xH/16xW/16

3xHxW

21xHxW



FCN-8s

FCN-8s has 2 skips.

64

Long et al, “Fully convolutional networks for semantic segmentation”, CVPR 2015.
Evan Shelhamer, et al., “Fully convolutional networks for semantic segmentation”, PAMI 2017.

CNN 
backbone

up to stage 

(total stride 8)

scoring
Bilinear 

Upsampling x2
Stage 

scoring + Bilinear 
Upsampling x2

256xH/16xW/16 512xH/32xW/32 21xH/32xW/32 21xH/16xW/16

21xH/16xW/16

3xHxW

21xHxW

Stage 

scoring + Bilinear 
Upsampling x8

21xH/8xW/8

21xH/8xW/8

128xH/8xW/8



U-net

It extends the idea of skips from FCNs 
to create a full-fledged decoder, which 
has roughly a symmetric structure with 
respect to the encoder.

Every activation produced by a stage 
of the backbone (or encoder, or 
“contracting path”) has a skip 
connection with the corresponding 
level of the decoder (or “expansive 
path”).

Scoring layer only at the end to project 
onto the desired number of classes

65

Ronneberger et al., “U-Net: Convolutional Networks for Biomedical Image Segmentation”, MICCAI 2015

Encoder Decoder



U-net

Skip connections use 
concatenation instead of 
summation as in FCN.

2x2 stride-2 transposed 
convolutions (“up-convolutions”) 
are used to upsample the 
activations in the decoder, while 
halving the number of channels.

Normal 3x3 convolutions are 
used in the decoder as well: with 
further processing, even initial 
layers of the backbone can 
effectively contribute to the final 
segmentation mask, as opposed 
to what happened in FCN.

66

Ronneberger et al., “U-Net: Convolutional Networks for Biomedical Image Segmentation”, MICCAI 2015



Unet - results

67



Recent topics



Supervised learning is great but…

Labels are expensive

- ImageNet 21k took 22 human years, and it 
“only” contains 21k concepts

Ground-truth is a convenient fiction

-Sometimes labels are ambiguous

-Not all the visual tasks allow for easy 
collection of labels

69



…it is far from perfect…

70

Performance of supervised methods is brittle: for instance, there exist adversarial examples, i.e. 
images that are wrongly classified when they are imperceptibly modified for humans

Ian J. Goodfellow et al. : “Explaining and Harnessing Adversarial Examples”. ICLR 2015



… and overfits the benchmarks (lack “common sense”)

71

Taori et al., “Measuring Robustness to Natural Distribution Shifts in Image Classification”, NeurIPS 2020.



Self-supervised learning

72

S. Gidaris, P. Singh, and N. Komodakis, “Unsupervised representation learning by predicting image rotations” in ICLR 2018.
Doersch et al. “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015

M. Noroozi and P. Favaro, “Unsupervised learning of visual representations by solving jigsaw puzzles”, ECCV 2016.



Self-supervised learning

• When used to learn effective representations to 
bootstrap/improve supervised learning, 
unsupervised learning is (often) referred to as 
self-supervised learning.

• “Self-supervised learning is a subset of 
unsupervised learning methods […] in which 
[neural networks] are explicitly trained with 
automatically generated labels (pseudo-labels).”

• The task solved while performing self-
supervised learning is often referred to as 
pretext task

73

Longlong Jing and Yingli Tian, “Self-supervised Visual Feature Learning with Deep Neural Networks: A Survey”, https://arxiv.org/abs/1902.06162

https://arxiv.org/abs/1902.06162


Self-supervision by contrastive learning

74

Ting Chen et al. , “A Simple Framework for Contrastive Learning of Visual Representations”,  ICML 2020
Ting Chen et al. , “Big Self-Supervised Models are Strong Semi-Supervised Learners”,  NeurIPS 2020

State-of-the-art self-supervised methods 
are closing the gap with respect to the 
supervised counterpart in some tasks.



SSL is the “dark matter” of AI

Supervised learning is a bottleneck for building more intelligent generalist models that can do multiple tasks and 
acquire new skills without massive amounts of labeled data. […]

A working hypothesis is that generalized knowledge about the world, or common sense, forms the bulk of biological 
intelligence in both humans and animals. This common sense ability is taken for granted in humans and animals but 
has remained an open challenge in AI research since its inception. In a way, common sense is the dark matter of 
artificial intelligence.

Common sense helps people learn new skills without requiring massive amounts of teaching for every single task. For 
example, if we show just a few drawings of cows to small children, they’ll eventually be able to recognize any cow they 
see. By contrast, AI systems trained with supervised learning require many examples of cow images and might still fail 
to classify cows in unusual situations, such as lying on a beach. How is it that humans can learn to drive a car in about 
20 hours of practice with very little supervision, while fully autonomous driving still eludes our best AI systems trained 
with thousands of hours of data from human drivers? The short answer is that humans rely on their previously 
acquired background knowledge of how the world works.

How do we get machines to do the same? We believe that self-supervised learning (SSL) is one of the most promising 
ways to build such background knowledge and approximate a form of common sense in AI systems.

75

https://ai.facebook.com/blog/self-supervised-learning-the-dark-matter-of-intelligence/ 

https://ai.facebook.com/blog/self-supervised-learning-the-dark-matter-of-intelligence/


Self-supervised learning in NLP

Self-supervised learning is routinely used in Natural Language Processing to learn language 
models, i.e. probability for the next word in a sentence.

Why is language modelling a good pretext task?

76

http://cs229.stanford.edu/notes2021spring/notes2021spring/cs229_lecture_selfsupervision_final.pdf 

http://cs229.stanford.edu/notes2021spring/notes2021spring/cs229_lecture_selfsupervision_final.pdf


Transformers

77

Ashish Vaswani et al., “Attention Is All You Need”, NIPS 2017.



Vision Transformer (ViT)

78

A. Dosovitskiy et al., “An Image Is Worth 16X16 Words: Transformers for Image Recognition At Scale”, ICLR 2020.



Transformers everywhere

79

Khan et al., “Transformers in Vision: A Survey”, arXiv 2021.



CLIP (Contrastive Language–Image Pre-training)

80

A. Radford et al., “Learning Transferable Visual Models From Natural Language Supervision”, ICML 2021



CLIP – Results and beyond

81

https://openai.com/blog/clip/
https://creator.nightcafe.studio/text-to-image-art

https://creator.nightcafe.studio/text-to-image-art
https://creator.nightcafe.studio/text-to-image-art
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