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Introduction

Motivation

Machine learning is about designing algorithms that automatically extract
valuable information from data. The emphasis here is on “automatic”, i.e.,
machine learning is concerned about general-purpose methodologies that can
be applied to many datasets, while producing something that is meaningful.
There are three concepts that are at the core of machine learning: data, a
model, and learning.
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Introduction

Motivation

Why a course on mathematics and statistics in master degree on Artifical
Intelligence?

We introduce the main mathematical and statistical concepts to talk about
the three main components of machine learning: data, models and learning.
Data are represented as vectors: linear algebra is the setting for manipulating
and using vectors.
Model. A good model can be used to predict what happens in the real world
without performing real-world experiments. Optimization and probability are
two different perspective for building models.
Learning from available data is the basis of Machine Learning. Multivariate
analysis and optimization are necessary tools for learning.
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Introduction

Motivation
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Introduction

Data and linear algebra

Since machine learning is inherently data driven, data is at the core data of
machine learning.
The goal of machine learning is to design general purpose methodologies to
extract valuable patterns from data, ideally without much domain-specific
expertise.
We represent numerical data as vectors and represent a table of such data as
a matrix. The study of vectors and matrices is called linear algebra
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Introduction

Models and probability

A model is typically used to describe a process for generating data, similar to
the dataset at hand.
Therefore, good models can also be thought of as simplified versions of the
real (unknown) data-generating process, capturing aspects that are relevant
for modeling the data and extracting hidden patterns from it.
A good model can then be used to predict what would happen in the real
world without performing real-world experiments. We often consider data to
be noisy observations of some true underlying signal.
We often would also like to have predictors that allow us to express some sort
of uncertainty, e.g., to quantify the confidence we have about the value of
the prediction at a particular test data point.
Quantification of uncertainty is the realm of probability theory
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Introduction

Learning and optimization

The crux of the matter is the learning component of machine learning.
Assume we are given a dataset and a suitable model. Training the model
means to use the data available to optimize some parameters of the model
with respect to a utility function that evaluates how well the model predicts
the training data.
Most training methods can be thought of as an approach analogous to
climbing a hill to reach its peak. In this analogy, the peak of the hill
corresponds to a maximum of some performance measures.
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Introduction

By summarizing...

We represent data as vectors.
We choose an appropriate model, either using the probabilistic or
optimization view.
We learn from available data by using numerical optimization methods with
the aim that the model performs well on data not used for training.
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Linear algebra

Prerquisites:vectors, matrices and vector spaces (ch.2 MML
book)

Vectors and Matrices operations
Inverse and transpose matrix
Solving linear systems of equations
Vector spaces ans subspaces
Linear independence of vectors: basis and rank
Linear mappings between vector spaces and their matrix representation
Affine spaces and affine mappings

elena.loli Mathemathics and Statistics for AI July 2023 12 / 109



Linear algebra

Insight on linear mappings
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Linear algebra

Geometric vectors: computing length and distances (ch3
MML book)

To compute the length of a vector (matrix) and the distance between vectors
(matrices) we need a measure.
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Linear algebra

Example of norms

1-norm (or Manhattan):

∥x∥1 =
n∑

i=1

|xi |, x ∈ Rn

2-norm (or Euclidean):

∥x∥2 =

√√√√ n∑
i=1

x2
i , x ∈ Rn
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Linear algebra

Example of norms
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Linear algebra

Inner products

Inner products allow for the introduction of intuitive geometrical concepts,
such as the length of a vector and the angle or distance between two vectors.
A major purpose of inner products is to determine whether vectors are
orthogonal to each other.
We may already be familiar with a particular type of inner product, the scalar
product in Rn, which is given by:

xT y =
n∑

i=1

xiyi

Inner products and norms are related:

∥x∥2
2 = xT x
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Linear algebra

Inner products

In addition to enabling the definition of lengths of vectors, as well as the distance
between two vectors, inner products also capture the geometry of a vector space
by defining the unique angle ω ∈ [0, π] between two vectors:

cosω =
xT y

∥x∥2∥y∥2
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Linear algebra

Orthogonal vectors and matrices

x , y ∈ Rn are orthogonal iff < x , y >= xT y = 0
x , y ∈ Rn are orthonormal iff x , y are orthogonal and ∥x∥ = ∥y∥ = 1
A square matrix A ∈ Rn×n is orthogonal iff its columns are orthonormal
vectors. In this case, AT = A−1
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Linear algebra

Orthonormal basis (ONB)
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Linear algebra

Orthogonal projections

Projections are an important class of linear transformations (besides rotations
and reflections) and play an important role in graphics, coding theory,
statistics and machine learning.
In machine learning, we often deal with data that is high-dimensional.
High-dimensional data is often hard to analyze or visualize.
However, high-dimensional data quite often possesses the property that only
a few dimensions contain most information, and most other dimensions are
not essential to describe key properties of the data.
When we compress or visualize high-dimensional data, we will lose
information. To minimize this compression loss, we ideally find the most
informative dimensions in the data.
More specifically, we can project the original high-dimensional data onto a
lower-dimensional feature space and work in this lower-dimensional space to
learn more about the dataset and extract relevant patterns
For example, machine learning algorithms, such as principal component
analysis (PCA) by Pearson (1901) and Hotelling (1933) and deep neural
networks (e.g., deep auto-encoders (Deng et al., 2010)), heavily exploit the
idea of dimensionality reduction.
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Linear algebra

Projections onto one dimensional subspaces
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Linear algebra

Projections onto one dimensional subspaces
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Linear algebra

Projections onto a two dimensional subspace
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Linear algebra

Projections onto a general subspace

Projections allow us to look at situations where we have a linear system
Ax = b without a solution. Recall that this means that b does not lie in the
span of A, i.e., the vector b does not lie in the subspace spanned by the
columns of A.
Given that the linear equation cannot be solved exactly, we can find an
approximate solution
The idea is to find the vector in the subspace spanned by the columns of A
that is closest to b, i.e., we compute the orthogonal projection of b onto the
subspace spanned by the columns of A.
This problem arises often in practice, and the solution is called the
least-squares (assuming the dot product as the inner product) of solution an
overdetermined system
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Linear algebra

Matrix decompositions : how to describe a matrix with few
important numbers(ch4 MML book)

Data is often represented in matrix form as well, e.g., where the rows of the
matrix represent different people and the columns describe different.
We consider: how to summarize matrices, how matrices can be decomposed,
and how these decompositions can be used for matrix approximations.
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Linear algebra

Matrix decompositions

A matrix can be characterized by few important numbers:
1 Eigenvalues (and associated eigenvectors)
2 Singular values (and associated singular vectors)

These values are computed through matrix factorizations.
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Linear algebra

Eigenvalues and eigenvectors
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Linear algebra

Eigenvalues and eigenvectors
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Linear algebra

Eigenvalues and eigenvectors
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Linear algebra

Eigenvalues and eigenvectors
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Linear algebra

Symmetric positive definite matrices

A square symmetric matrix A ∈ Rn×n is said positive definite iff :

∀x ∈ Rn, xTAx > 0

The eigenvalues of a symmetric positive definite matrix A are all positive.
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Linear algebra

Eigendecomposition and diagonalization
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Linear algebra

Eigendecomposition and diagonalization
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Linear algebra

Geometrical interpretation of eigendecomposition
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Linear algebra

Singular Value Decomposition (SVD)

The Singular Value Decomposition (SVD) can be applied to all the amtrices
(not limited to square) and it always exists.
It represents a linear mapping Φ : V → W and quantifies the chenage of the
geometry of the two vector spaces.
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Linear algebra

SVD
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Linear algebra

SVD
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Linear algebra

Geometrical interpretation of SVD

The SVD of a matrix can be interpreted as a decomposition of a
corresponding linear mapping Φ : Rn → Rm into three operations.
It performs a change of basis through V T , followed by a scaling through Σ
and a second basis change via U.
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Linear algebra

Eigenvalues vs. Singular values
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Linear algebra

SVD
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Linear algebra

Matrix approximation by SVD
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Linear algebra

Matrix approximation by SVD

We define the rank-k approximation of A

with rank Â(k) = k .
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Linear algebra

The spectral norm
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Linear algebra

Matrix approximation by SVD
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Linear algebra

Example of image approximation by SVD
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Probability and statistics

Introduction to probability (Ch. 6 MML book)

We often quantify uncertainty in the data, uncertainty in the machine
learning model, and uncertainty in the predictions produced by random
variable the model.
Quantifying uncertainty requires the idea of a random variable, which is a
function that maps outcomes of random experiments to a set of properties
that we are interested in.
Associated with the random variable is a function that measures the
probability that a particular outcome (or set of outcomes) will occur; this is
called the probability distribution.
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Probability and statistics

Introduction to probability

The theory of probability aims at defining a mathematical structure to
describe random outcomes of experiments.
For example, when tossing a single coin, we cannot determine the outcome,
but by doing a large number of coin tosses, we can observe a regularity in the
average outcome.
Using this mathematical structure of probability, the goal is to perform
automated reasoning, and in this sense, probability generalizes logical
reasoning
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Probability and statistics

Bayesian and frequentist probability interpretations

In machine learning and statistics, there are two major interpretations of
probability: the Bayesian and frequentist interpretations

The Bayesian interpretation uses probability to specify the degree of
uncertainty that the user has about an event. It is sometimes referred to as
“subjective probability” or “degree of belief”.
The frequentist interpretation considers the relative frequencies of events of
interest to the total number of events that occurred. The probability of an
event is defined as the relative frequency of the event in the limit when one
has infinite data.
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Probability and statistics

Sample space, events and probability

The sample space is the set of all possible outcomes of the experiment,
sample space usually denoted by Ω. For example, two successive coin tosses
have a sample space of {hh, tt, ht, th} where “h” denotes “heads” and “t”
denotes “tails”.
The event space A is the space of potential results of the experiment. The
event space A is obtained by considering the collection of subsets of Ω.
With each event A ∈ A , we associate a number P(A) that measures the
probability or degree of belief that the event will occur. P(A) is called the
probability of A.
The probability of a single event A must lie in the interval [0; 1], and the total
probability over all outcomes in the sample space must be 1, i.e., P(Ω) = 1
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Probability and statistics

Random variable

However, we mostly do not work directly with this basic probability space.
Instead, we work with random variables (the second idea), which transfers
the probability to a more convenient (often numerical) space.
In machine learning, we often avoid explicitly referring to the probability
space, but instead refer to probabilities on quantities of interest, which we
denote by T .
We refer to T as the target space and refer to elements of T as states.
We introduce a target space function X : Ω → T and that takes an element
of Ω (an event) and returns a particular quantity of interest x , a value in T .
This association/mapping from to T is called a random variable.
A random variable X is said discrete or continuous if its target space T is a
discrete or continuos set.
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Probability and statistics

Random variable

For example, in the case of tossing two coins and counting the number of heads, a
random variable X maps to the three possible outcomes: X(hh) = 2, X(ht) = 1,
X(th) = 1, and X(tt) = 0. In this particular case, T = {0; 1; 2}, and it is the
probabilities on elements of T that we are interested in.

elena.loli Mathemathics and Statistics for AI July 2023 53 / 109



Probability and statistics

Discrete random variables

When the target space T is discrete, we can specify the probability that a
random variable X takes a particular value x ∈ T , denoted as P(X = x).
The expression P(X = x) for a discrete random variable X is known as the
probability mass function.
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Probability and statistics

Joint probability of two discrete random variables

If we have two random variables X and Y with values (x1, . . . xn) and
(y1, . . . ym), respectively.
The target space of the joint probability is the Cartesian product of the target
spaces of each of joint probability the random variables.
The joint probability p(x , y) is the probability of the intersection of both
events, that is, P(X = xi ;Y = yj) = P(X = xi ∩ Y = yj).
The marginal probability that X takes the value x irrespective of the value
marginal probability of random variable Y is (lazily) written as p(x).
If we consider only the instances where X = x , then the fraction of instances
the conditional probability, for which Y = y is written (lazily) as p(y |x).
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Probability and statistics

Discrete probability distributions

In machine learning, we use discrete probability distributions to model
categorical variable categorical variables, i.e., variables that take a finite set
of unordered values.
They could be categorical features, such as the degree taken at university
when used for predicting the salary of a person, or categorical labels, such as
letters of the alphabet when doing handwriting recognition.
Discrete distributions are also often used to construct probabilistic models
that combine a finite number of continuous distributions.
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Probability and statistics

Continuous random variables

We consider real-valued random variables, i.e., we consider target spaces that
are intervals of the real line.
The distribution function for a continuous random variable is called density
function.
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Probability and statistics

Multivariate random variables

We refer to univariate distribution to refer to distributions of a single
random variable
We will refer to distributions of more than one random variable as
multivariate distributions, and will usually consider a vector of random
variables ∈ RD ,D > 1.
All the previous definitions and results given for univariate random variables
can be easily extended to multivariate random variables.
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Probability and statistics

Bayes’ theorem

In machine learning and Bayesian statistics, we are often interested in making
inferences of unobserved (latent) random variables given that we have
observed other random variables.
Let us assume we have some prior knowledge p(x) about an unobserved
random variable x and some relationship p(y |x) between x and a second
random variable y, which we can observe.
If we observe y, we can use Bayes’ theorem to draw some conclusions about x
given the observed values of y.
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Probability and statistics

Bayes’ theorem

Bayes’ theorem (also Bayes’ theorem Bayes’ rule or Bayes’ law) Bayes’ rule:

p(x) is the prior, which encapsulates our subjective prior prior knowledge of
the unobserved (latent) variable x before observing any data. We can choose
any prior that makes sense to us, but it is critical to ensure that the prior has
nonzero pdf (or pmf) on all plausible x.
The likelihood p(y |x) describes how x and y are related, and in the likelihood
case of discrete probability distributions, it is the probability of the data y if
we were to know the latent variable x.
The posterior p(x |y) is the quantity of interest in Bayesian statistics posterior
because it expresses exactly what we are interested in, i.e., what we know
about x after having observed y.
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Probability and statistics

Bayes’ theorem

The quantity:

is the marginal likelihood/evidence.
Bayes’ theorem allows us to invert the relationship between x and y given by
the likelihood. Therefore, Bayes’ theorem is sometimes probabilistic inverse
called the probabilistic inverse
In Bayesian statistics, the posterior distribution is the quantity of interest as
it encapsulates all available information from the prior and the data. Instead
of carrying the posterior around, it is possible to focus on some statistic of
the posterior, such as the maximum of the posterior,
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Probability and statistics

Mean of a random variable

The mean of a random variable X (also called population mean) (also defined as
the mean of the probability distribution p of X) is defined as:

µ = E [x ] =
∑
xi∈X

xip(xi )

if X is a discrete random variable (X is the target space of X ) and

µ = E [x ] =

∫
X
xp(x)dx

if X is a continuous random variable.
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Probability and statistics

Variance and standard deviation of a random variable

The variance of a random variable X (also called population variance) (also
defined as the variance of the probability distribution p of X) is defined as:

σ2 = V [x ] =
∑
xi∈X

(xi − E [x ])2p(xi )

if X is a discrete random variable (X is the target space of X ) and

σ2 = E [x ] =

∫
X
(x − E [x ])2p(x)dx

if X is a continuous random variable.
The standard deviation of a random variable X (also called population standard
deviation) (also defined as the standard deviation of the probability distribution p
of X) is defined as:

σ =
√
σ2
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Probability and statistics

Covariance between two random variables

The covariance C [x , x coincides with the variance V [x ].
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Probability and statistics

Correlation between two random variables

The covariance (and correlation) indicate how two random variables are related.
Positive correlation corr [x ; y ] means that when x grows, then y is also expected to
grow. Negative correlation means that as x increases, then y decreases.
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Probability and statistics

Gaussian distribution

The Gaussian distribution is the most well-studied probability distribution for
continuous-valued random variables.
It is also referred to as the normal normal distribution distribution.
Its importance originates from the fact that it has many computationally
convenient properties.
There are many other areas of machine learning that also benefit from using
a Gaussian distribution, for example Gaussian processes, variational inference,
and reinforcement learning
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Probability and statistics

Gaussian distribution
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Probability and statistics

Statistics

Probability theory and statistics are often presented together, but they
concern different aspects of uncertainty
One way of contrasting them is by the kinds of problems that are considered.
Using probability, we can consider a model of some process, where the
underlying uncertainty is captured by random variables, and we use the rules
of probability to derive what happens.
In statistics, we observe that something has happened and try to figure out
the underlying process that explains the observations. In this sense, machine
learning is close to statistics in its goals to construct a model that adequately
represents the process that generated the data. We can use the rules of
probability to obtain a “best-fitting” model for some data.
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Probability and statistics

Statistics

The previous definitions are often also called the population mean and
variance, as it refers to the true statistics for the population.
In ma- and covariance chine learning, we need to learn from empirical
observations of data. Consider a random variable X. There are two conceptual
steps to go from population statistics to the realization of empirical statistics.
First, we use the fact that we have a finite dataset (of size N) to construct an
empirical statistic that is a function of a finite number of identical random
variables, (X1; . . . ;XN).
Second, we observe the data, that is, we look at the realization x1; . . . xN of
each of the random variables and apply the empirical statistic.
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Probability and statistics

Empirical mean and covariance

In machine learning, we need to learn from empirical observations of data.
Consider a random variable X.
There are two conceptual steps to go from population statistics to the
realization of empirical statistics. First, we use the fact that we have a finite
dataset (of size N) to construct an empirical statistic that is a function of
one (or more in the multivariate case) random variable.
Second, we observe the data, that is, we look at the realization x1; . . . ; xN of
each of the random variables and apply the empirical statistic.
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Probability and statistics

Descriptive statistics:Empirical mean and variance

Given a particular dataset we an obtain an estimate of the mean, which is called
the empirical mean or sample mean. The same holds for the empirical covariance
and variance.
Empirical mean The empirical mean is the average of the observations x1, . . . xN
of the random variable X dxefined as:

x̄ =
1
N

N∑
i=1

xi

Empirical variance The empirical variance is defined as follows:

S2 =
1

N − 1

N∑
i=1

(xi − x̄)2

elena.loli Mathemathics and Statistics for AI July 2023 71 / 109



Probability and statistics

Statistical inference

Statistical inference is the process of using data analysis to infer properties of
an underlying distribution of probability.
Inferential statistical analysis infers properties of a population, for example by
testing hypotheses and deriving estimates. It is assumed that the observed
data set is sampled from a larger population.
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Probability and statistics

Statistical inference
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Probability and statistics

Sampling

The sample of size N chosen from the population is meaningful if:
it is randomly chosen
it is representative of the different features of the population
the size N is adequate

In this case we call it a Simple Random Sample of size N (SRS(N))
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Probability and statistics

Parameter estimates and confidence intervals

The estimate of the population mean from a SRS(N) is made by the
empirical mean.
The empirical mean value depends on the particular sample considered.
We define the confidence interval of probability lpha the interval Iα that
contains the population mean value µ with a probability of 100(1 − α)%.
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Probability and statistics

Confidence interval for the mean of a population with
normal distribution

Suppose x1, . . . xn a SRS(N) from a population with normal distribution N (µ, σ)
and x̄ the estimated mean with the empirical mean formula.
Given α ∈ [0, 1], the confidence interval Iα is defined as:

Iα = [x̄ − zα/2
σ√
N
, x̄ + zα/2

σ√
N
]

where zα/2 is the quantile of index α/2 of the standard normal distribution, i.e.
N (0, 1)
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Vector calculus and optimization

Vector calculus (ch. 5 MML book)

In Machine Learning we deal with functions whose domain is in RD , with D > 1.
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Vector calculus and optimization

Partial derivative and gradient

elena.loli Mathemathics and Statistics for AI July 2023 79 / 109



Vector calculus and optimization

An example
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Vector calculus and optimization

Basic rules of partial differentiation
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Vector calculus and optimization

Example of chain rule
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Vector calculus and optimization

Backpropagation and automatic differentiation

In many machine learning applications it is necessary to compute the gradient of a
learning objective function with respect to the parameters of the model and this is
done by applying the chain rule.

elena.loli Mathemathics and Statistics for AI July 2023 83 / 109



Vector calculus and optimization

Backpropagation and automatic differentiation

Writing out the gradient in this explicit way is often impractical since it often
results in a very lengthy expression for a derivative
In practice, it means that, if we are not careful, the implementation of the
gradient could be significantly more expensive than computing the function,
which imposes unnecessary overhead.
For training deep neural network models, the backpropagation algorithm is an
efficient way to compute the gradient of an error function with respect to the
parameters of the model.
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Vector calculus and optimization

Backpropagation and automatic differentiation
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Vector calculus and optimization

Backpropagation and automatic differentiation

Backpropagation is a special case of a general technique in numerical analysis
called automatic differentiation.
We can think of automatic differentation as a set of techniques to
numerically (in contrast to differentiation symbolically) evaluate the exact
(up to machine precision) gradient of a function by working with intermediate
variables and applying the chain rule.
Automatic differentiation applies a series of elementary arithmetic operations,
e.g., addition and multiplication and elementary functions, e.g., sin; cos; exp;
log. By applying the chain rule to these operations, the gradient of quite
complicated functions can be computed automatically
Automatic differentiation applies to general computer programs and has
forward and reverse modes.
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Vector calculus and optimization

Backpropagation and automatic differentiation

The Figure shows a simple graph representing the data flow from inputs x to
outputs y via some intermediate variables a and b.
If we were to compute the derivative dy/dx , we would apply the chain rule and
obtain:
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Backpropagation and automatic differentiation
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Vector calculus and optimization

Backpropagation and automatic differentiation

In the context of neural networks, where the input dimensionality is often much
higher than the dimensionality of the labels, the reverse mode is computationally
significantly cheaper than the forward mode. Let us start with an instructive
example.
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Backpropagation and automatic differentiation
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Backpropagation and automatic differentiation
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Vector calculus and optimization

Ottimizzazione non vincolata: definizioni

Consideriamo il problema di ottimizzazione non vincolata:

min
x

f (x)

dove x ∈ Rn è un vettore reale di n ≥ 1 componenti e la funzione obiettivo
f : Rn → R è una funzione regolare.

Un vettore x∗ è un punto di minimo locale di f (x) se esiste un ϵ > 0 tale

f (x∗) ≤ f (x) per ogni x tale che ∥x − x∗∥ < ϵ.

Un vettore x∗ è un punto di minimo globale di f (x) se

f (x∗) ≤ f (x) per ogni x ∈ Rn.

x∗ è un punto di minimo globale in senso stretto di f (x) se

f (x∗) < f (x) ∀x ∈ Rn, x ̸= x∗.
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Vector calculus and optimization

Ottimizzazione non vincolata: definizioni

Una funzione f (x) può avere un unico punto di minimo locale (quindi anche
globale), oppure può non avere nè minimi locali nè globali, può avere sia minimi
locali che globali...

(a) y = (x − x∗)2 un
unico punto di minimo

(b) y = −2 cos(x − x∗)
molti punti di minimo
globale.

(c) y = 0.015(x−x∗)2−
2 cos(x − x∗) un punto
di minimo globale e molti
punti di minimo locale.

Figure: Punti di minimo locale e globale
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Vector calculus and optimization

Ottimizzazione: algoritmi

Le condizioni precedenti per i punti di minimo locale non hanno utilità
pratica.
Sarà però possibile determinare, con ipotesi aggiuntive sulla funzine obiettivo,
delle condizioni di ottimalità utilizzabili in pratica.
Gli algoritmi classici determinano minimi locali, in quanto la ricerca di minimi
globali è molto complessa e costosa.
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Vector calculus and optimization

Condizioni di ottimalità

Se x∗ è un punto di minimo locale e f è differenziabile con continuità in un
intorno aperto di x∗, allora ∇f (x∗) = 0.
Un punto x∗ tale che ∇f (x∗) = 0 è detto punto stazionario. Dal teorema
segue che:
x∗ punto di minimo ⇒ x∗ punto stazionario
La condizione ∇f (x∗) è condizione necessaria affinchè x∗ sia un punto di
minimo locale; tale condizione non è però sufficiente poichè un punto
stazionario può essere un punto di minimo locale, un punto di massimo locale
o un punto di sella.
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Condizioni di ottimalità

(a) Punto di minimo. (b) Punto di massimo. (c) Punto di sella.

Figure: Tipi di punti stazionari.
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Vector calculus and optimization

Funzioni convesse

Una funzione f è convessa in Rn se

f
(
αx + (1 − α)y

)
≤ αf (x) + (1 − α)f (y)

per ogni 0 ≤ α ≤ 1 e per ogni x , y ∈ Rn.
Se f è convessa, allora ogni punto di minimo locale x∗ è un punto di minimo
globale di f .
Se f è strettamente convessa, allora esiste un unico punto di minimo globale.
Se f è differenziabile e convessa, allora ogni punto stazionario x∗ è un punto
di minimo globale di f .
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Vector calculus and optimization

Caratteristiche degli algoritmi di ottimizzazione

Gli algoritmi di ottimizzazione sono algoritmi iterativi.
Gli algoritmi iterativi calcolano una sequenza di iterati x1, x2, . . ., a partire da
un iterato iniziale x0 assegnato, secondo una legge del tipo:

xk+1 = G (xk).

La successione {xk} deve avere proprietà di convergenza alla soluzione
esatta x∗:

lim
k→∞

xk = x∗
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Generalità

Tutti gli algoritmi per l’ottimizzazione non vincolata richiedono che l’utente
fornisca un punto iniziale x0. In generale, non esistono criteri generali per
effettuare una buona scelta di x0 e quindi si è interessati a definire algoritmi le
cui proprietà di convergenza siano indipendenti dalla scelta del punto iniziale.

A partire da x0, gli algoritmi generano una successione di iterati {xk}∞k=0 che
termina o quando non è possibile fare alcun progresso verso la soluzione o
quando la soluzione è stata approssimata con sufficiente accuratezza.

Gli algoritmi utilizzano informazioni sulla funzione obiettivo f in xk e, a volte,
informazioni dagli iterati precedenti per determinare un nuovo punto xk+1
con un valore più piccolo della funzione obiettivo.

Esistono due strategie fondamentali per muoversi dall’iterato corrente xk
verso il nuovo iterato xk+1: line search e trust region.
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Vector calculus and optimization

Convergenza a punti stazionari

Gli algoritmi di ottimizzazione garantiscono, in generale, la determinazione di
punti che soddisfano condizioni necessarie di ottimo.

Tutti i metodi considerati consentono di determinare punti stazionari di f .

Nel caso non convesso, la determinazione di punti stazionari non fornisce una
soluzione globale e non è neanche possibile, in generale, garantire che sia
raggiunto un punto di minimo locale.
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Vector calculus and optimization

Criteri di arresto e fallimenti

Negli algoritmi di ottimizzazione non vincolata per criterio di arresto si
intende il criterio che dovrebbe indicare il raggiungimento con successo di un
punto stazionario con la tolleranza specificata dall’utente.
Dal punto di vista teorico, il criterio di arresto di un algoritmo che genera la
successione xk dovrebbe essere la condizione

∥∇f (xk)∥ ≤ ϵ, ϵ > 0 (1)

Il raggiungimento di un numero massimo di iterazioni, che non garantisce la
convergenza del metodo
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Vector calculus and optimization

Definizione di metodo di discesa

Sia dato il problema di minimizzare f : Rn → R differenziabile con continuità.
I metodi di discesa sono metodi iterativi che, a partire da un iterato iniziale
x0 ∈ RRn e detta x∗ la soluzione esatta del problema, generano una successione
di vettori

x0, x1, x2, . . . ,

definiti dall’iterazione
xk+1 = xk + αkpk (2)

dove il vettore pk è una direzione di ricerca e lo scalare αk è un parametro
positivo chiamato lunghezza del passo (step-length) che indica la distanza di cui ci
si deve muovere lungo la direzione pk .
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Vector calculus and optimization

Metodo di discesa

In un metodo di discesa, il vettore pk ed il parametro αk sono scelti in modo da
garantire la decrescita di f (x) ad ogni iterazione:

f (xk+1) < f (xk), k = 0, 1, . . .

Il vettore p è una direzione di discesa di f in x se esiste un α > 0 tale che

f (x + αp) < f (x) per ogni α ∈ (0, α]

Quindi la retta x = xk + αpk deve formare un angolo ottuso con la direzione
del gradiente (derivata direzionale negativa)
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Vector calculus and optimization

Direzione di discesa

Lemma.
Sia f ∈ C 1, il vettore p è una direzione di discesa di f in x se

pT∇f (x) < 0

I metodi di discesa utilizzano direzioni pk di discesa poichè garantiscono una
decrescita di f nella direzione di pk .
A seconda della scelta di pk si hanno diversi metodi di discesa.
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Vector calculus and optimization

Interpretazione geometrica

Ricordando che il concetto di angolo tra due vettori x ̸= 0 e y ̸= 0 in Rn si può
introdurre attraverso la definizione di coseno, ponendo

cos θ =
xT y

∥x∥∥y∥

si può dire che l’angolo tra p e ∇f (x) è
ottuso se pT (x) < 0
acuto se pT (x) > 0

I vettori p e ∇f (x) sono ortogonali se pT (x) = 0.
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Vector calculus and optimization

Schema generale metodo di discea

Metodo di discesa

Dato x0, per k = 0, 1, 2, . . .
i) determinare una direzione di discesa pk ;
ii) determinare una lunghezza del passo αk ;
iii) porre xk+1 = xk + αkpk e k + 1 = k ;
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Vector calculus and optimization

Scelta della direzione di discesa

Direzione del gradiente.
Corrisponde alla scelta

pk = −∇f (x), per ogni k

In corrispondenza di questa scelta della direzione di discesa si ottengono i metodi
di tipo gradiente
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Vector calculus and optimization

Scelta della lunghezza del passo

Esistono diverse tecniche per determinare la lunghezza del passo in modo tale
da garantire la convergenza del metodo di discesa verso punti stazionari di f .
Esse sono, in generale, chiamate tecniche di ricerca in linea (line search)
perchè la ricerca di un nuovo iterato xk+1 è fatta lungo la linea
y(α) = xk + αpk .
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Vector calculus and optimization

Convergenza

Diciamo globalmente convergenti gli algoritmi per cui vale la precedente
condizione:

lim
k→∞

∥(xk)∥ = 0 (3)

Questo non significa che l’algoritmo converga ad un minimo globale, ma solo
che converge ad un punto stazionario.
Con le condizioni di ricerca in linea inesatte che abbiamo visto è la
convergenza più forte che si può ottenere.
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