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AI, ML & XAI

Drivers & Limitations I

Socio-political requirements
both individuals and human organisations rely more and more upon
artificial systems

which are delegated increasingly-complex functions, tasks, and goals
that human processes depend upon

artificial systems are nowadays required to
understand the context, the users, and the goals of the system itself,
and behave accordingly
operate autonomously in dynamic environments
work with physically-sparse components, each one placed in its own
physical location
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AI, ML & XAI

Drivers & Limitations II

Drivers
drawing from the aforementioned requirements, we can see that the
main drivers for the engineering of artificial systems nowadays are

intelligence
autonomy
physical distribution

today we obviously focus on intelligence as our main line
possibile keeping in mind the other two for any future reference
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AI, ML & XAI

Drivers & Limitations III

Limitations
Dually, artificial systems are also ideally required to

be trustable by humans—so, transparent, understandable, accountable,
. . . for human users
respect human autonomy at their core, possibly mitigating their own
autonomous behaviour, and supporting human users in their choices
and deliberations
be non-intrusive, both physically and cognitively, while respecting and
protecting privacy and safety of human users

Yet, we are far far away from there
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AI, ML & XAI

Where is AI from? I

understanding how intelligence works is a persistent issue for humans
Aristotle’s logics is the most outstanding example of that[De Rijk, 2002]

“understanding”, for humans, typically means to be able to model and
reproduce
building machines that can reproduce intelligence

either as by reproducing some known intelligent process
or by reproducing some observed intelligent behaviour

is a way to measure how much we understand the way in which
intelligence works

Magnini, Ciatto, Omicini (UniBo) Gentle Introduction to XAI ASAI-ER, 2023 6 / 191



AI, ML & XAI

Where is AI from? II

The birth of AI
the dualism between AI as intelligent behaviour and AI as intelligent
process was already there in AI since the very beginning
Dartmouth College, New Hampshire, USA – Summer School, 1956

John McCarthy invites all scholars interested in computing towards
intelligence

among those
Marvin Minsky, co-founder of AI Lab at MIT
Alan Newell, Herb Simon, authors of Logic Theorist (an automatic
theorem prover)—likely the first AI program[Newell and Simon, 1956]

John McCarthy, inventor of LISP, the first programming language for
AI[McCarthy, 1981]

the term “Artificial Intelligence” was actually coined there, to describe
the overall new field of research
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AI, ML & XAI

General AI I

General purpose AI
building general-purpose intelligence machines is the goal of General AI
we do have a poor understanding of human intelligence, and of
intelligence in general
early AI focussed then on intelligent components

Components of intelligence
perception
problem solving & planning
reasoning
machine learning
natural language understanding
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AI, ML & XAI

General AI II

Perception
understanding the environment
through sensors of any sort
interpreting the overall situation

! one of the most difficult task of AI

Problem solving & planning
devising a course of actions towards a goal
based on a repertoire of actions
e.g., playing games
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AI, ML & XAI

General AI III

Machine learning
learning from data
building models (e.g., classification)
making predictions
e.g., face recognition through training

Reasoning
representing knowledge
inferring new knowledge from available one
in a consistent and robust way
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AI, ML & XAI

General AI IV

Natural language understanding
ability to understand human languages
either spoken or written
possibly engage in conversations with humans

! currently the main focus of the natural language processing (NLP)
field
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AI, ML & XAI

AI: The Contemporary Era I

1 – Grand DARPA Challenges
where AI and autonomous systems shared their first success
race for autonomous vehicles in the desert of Nevada (2005)

won by STANLEY,[Thrun et al., 2006] a converted Volkswagen Touareg,
equipped with seven onboard computers, interpreting sensor data from
GPS, laser rangefinders, radar, and video feed

the sudden global attention towards autonomous cars came from this
very stream
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AI, ML & XAI

AI: The Contemporary Era II

2 – Alpha Go: Triumph of ML[Silver et al., 2016]

in 2014 DeepMind demonstrated a system learning how to play arcade
games just looking at the video and accessing the scores, using the
same controls as humans

acquired by Google, they built Alpha Go, which beat Go champion Lee
Sedol 4 to 1 in 2016

exploiting deep neural networks along with self-training
Go search space is so huge that brute force just does not work: so, it
was considered impossible for a machine to beat a human at Go

so, this also made everybody aware that there were no known limits to
the ability that machine intelligence could reach
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AI, ML & XAI

AI: The Contemporary Era III

ML: Three factor for success
scientific breakthroughs—deep learning dealing with complex problems
training requires lots of data—nowadays data are hugely available
training requires computational power—nowadays computational
power is more and more available
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AI, ML & XAI

AI: The Contemporary Era IV

3 – ChatGPT and Beyond: Generative AI
“classic” AI techniques mostly deal with analysing or acting on existing
data

e.g., expert systems, built upon knowledge bases and an inference
engine generating content via an if-else rule database

generative AI[Gozalo-Brizuela and Garrido-Merchan, 2023] includes instead techniques
that can generate novel content, using mechanisms like probabilistic
machine learning [Murphy, 2022]
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AI, ML & XAI

AI: The Contemporary Era V State of the Art of Generative AI 3

Fig. 1. A taxonomy of the most popular generative AI models that have recently
appeared classified according to their input and generated formats.

Fig. 2. Covered models by date of release. All models were released during 2022 except
LaMDA, which was released in 2021 and Muse, in 2023.

A taxonomy of current Generative AI available technologies[Gozalo-Brizuela and Garrido-Merchan, 2023]
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AI, ML & XAI

Intelligent Socio-Technical Systems

in the realm of intelligent systems, nowadays, humans are legitimate
components in the same way as software and physical agents
where both human and software agents accounts for activity,
knowledge, intelligence, goals, learning, . . .
as legitimate components of intelligent socio-technical systems
so that now the fundamental question becomes

? how are we going to shape the interaction between heterogeneous
intelligent components within intelligent socio-technical systems?

?? e.g., is NLP the answer?
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AI, ML & XAI

People Need to Understand Systems

human users rely more and more on intelligent systems for their
everyday activities, as well as for critical aspects such as health and
money
humans and intelligent agents work together in intelligent
socio-technical systems to produce overall intelligent behaviour
e.g. decision support systems exploit intelligent systems in order to promote

rational human decisions

→ information and actions by intelligent agents need to be
understandable by humans to be accepted and trusted

→ humans need explanations
which is where explainable artificial intelligence (XAI) comes
from[Gunning, 2016b]
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AI, ML & XAI

Why Don’t Humans Understand Intelligent Systems?

the technical XAI problem in short
symbolic approaches are transparent yet slow—e.g., computational
logic
sub-symbolic approaches are fast yet opaque—e.g., deep learning

so, symbolic / sub-symbolic integration is the most promising way out
and, everyone is already doing that[Calegari et al., 2020]

yet: integration how?
based on what integration model?
which conceptual foundation for integrating symbolic / sub-symbolic
techniques within a coherent intelligent system model / architecture?
and mostly, how do we keep the benefits of both without the
drawbacks?
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AI, ML & XAI

Explanation Everywhere

the notion of explanation is the core of many research efforts
along with accessory notions such as interpretation and
understandability

and undergone a constant flow of diverse and (sometimes) even
extravagant definitions

e.g., even GDPR[Voigt and von dem Bussche, 2017] recognises “the citizens’
right to explanation” [Goodman and Flaxman, 2017]

most encompassing in the same acceptation of the term ‘explanation’
both the explanator and the explainee acts

! the dialectical notion of explanation
whereas a notion of explanation as an explanator’s act is where we
mostly insist today

so that we can focus on the cognitive process of the explainee
and on the technical side of our intelligent systems, as well
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AI, ML & XAI

Explanation as Representation & Transformation

contribution from math teaching [D’Amore, 2005]

being math the most difficult subject to explain & teach
a semiotic representation is required whenever the object of an
explanation is inaccessible to perception

noetics — conceptual acquisition of an object
semiotics — acquisition of a representation built out of signs

explaining a concept via different semiotic representations
transformation of treatment — changing representation within the

same register of semiotics
transformation of conversion — changing register of semiotics for the

representation
explanation as

first, generation of semiotic representation
then, transformation of semiotic register
finally, sharing of the transformed representation

! explainers share their cognitive process with explainees as explanation
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AI, ML & XAI

Humans Share Knowledge

it is not brain size (or whatever like that) that separates humans from
other intelligent animals like primates

instead, it is mostly our will to share knowledge [Dean et al., 2012]

in general, knowledge sharing is a peculiar trait of humanity
it is how we do understand each other
it is how we learn
it is the foundation of human society
where human culture is a cumulative one

e.g. human science is a shared social construct
scientific artefacts are required to be understandable for the community
so as to enable reproducibility and refutability in the scientific
process[Popper, 2002]
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AI, ML & XAI

Sharing is Rational

there is intelligence without representation[Brooks, 1991b] and without
reason[Brooks, 1991a]

yet, human cumulative culture is based on representation
tools—language, writing, books, the Web

repeatable, systematic sharing requires rational representation
even when we are sharing intuitive, implicit knowledge

and, sharing implicit knowledge typically calls for rational explanation
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AI, ML & XAI

Cognition is (Not Just) Rational

Rationality vs. intuition

two sorts of cognitive processes
esprit de finesse vs. esprit de
géométrie—rationality has
limits[Pascal, 1669]

cognitivism against behaviourism in
psychology[Skinner, 1985]

concepts and distinctions not born in the CS / AI fields
surely not in the ML community

yet, they roughly match the two main families of AI techniques
symbolic vs. sub-/non-symbolic
informally, classic AI vs. ML-based AI

and, the two sides of today intelligent systems
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AI, ML & XAI

Focus on ML

(Mostly) in ML, we let machines learn specific tasks from data
through the production of numeric predictors, a.k.a. black-boxes
instead of programming those tasks ourselves

Unfortunately, black boxes are inherently
opaque w.r.t. the knowledge they acquire from data[Lipton, 2018]

sub-optimal in performance, as they are trained to minimise errors
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AI, ML & XAI

Opaqueness

Opaqueness of ML-based predictors brings several
drawbacks:[Guidotti et al., 2018, Lipton, 2018]

difficulty in understanding what a black box has learned from data
e.g. “snowy background” problem[Ribeiro et al., 2016]

difficulty in spotting “bugs” in what a numeric predictor has learned
because that knowledge is not explicitly represented

several blatant failures of ML-based systems reported so far
e.g. black people classified as gorillas[Crawford, 2016]

e.g. wolves classified because of snowy background[Ribeiro et al., 2016]

e.g. unfair decisions in automated legal systems[Wexler, 2017]

lawmakers recognised citizens’ right to meaningful
explanations[Selbst and Powles, 2017]

about the logic behind automated decision making
e.g. in General Data Protection Regulation (GDPR) [Parliament and Council, 2016]
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AI, ML & XAI

The Problem with ML-based AI

Trustworthiness
How can we trust machines we do not fully control?

↓

Controllability
How can we control machines we do not fully understand?

↓

Understandability
How can we understand distributed, numeric representations of knowledge?
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AI, ML & XAI

The eXplanable AI (XAI) Approach[Gunning, 2016a]

The XAI community is nowadays facing those understandability issues
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XAI Background
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XAI Background Overview on XAI
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XAI Background Overview on XAI

Relevant Questions for XAI

1 What are we trying to explain?
in general, AI-based systems

2 Who is in charge of producing explanations?
the AI system itself? human experts? ordinary users?

3 To whom are explanations addressed?
humans (developers, end users)? other AI systems?

4 How are we going to create explanations?
this is the actual core of XAI research

5 Which are the most adequate sorts of explanation?
this depends on the answers to the questions above

6 When should explanations be presented to the user?
this, too, depends on the answers to the questions above
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XAI Background Overview on XAI

Current Practice of XAI

1 What are we trying to explain?
mostly data-driven, ML-powered systems

2 Who is in charge of producing explanations?
AI experts, data scientists, ML engineers

3 To whom are explanations addressed?
people having a certain degree of expertise in AI/ML

4 How are we going to create explanations?
via task-, model-, and data-specific algorithms

5 Which are the most adequate sorts of explanation?
depends on task, model, data, and consumer at hand
other than on the available XAI algorithms

6 When should explanations be presented to the user?
mostly in the training phase; possibly in inference phase

Magnini, Ciatto, Omicini (UniBo) Gentle Introduction to XAI ASAI-ER, 2023 32 / 191



XAI Background Overview on XAI

The Future of XAI

1 What are we trying to explain?
any system including computational agents with some degree of
autonomy

2 Who is in charge of producing explanations?
the system, i.e., the agents themselves

3 To whom are explanations addressed?
people with diverse levels of expertise
other computational agents

4 How are we going to create explanations?
via task-, model-, and data-specific algorithms
plus consumer-specific presentation strategies

5 Which are the most adequate sorts of explanation?
the ones which better adapt to the needs of the user

6 When should explanations be presented to the user?
upon request—i.e., as part of a dialogue
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XAI Background XAI Nowadays
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XAI Background XAI Nowadays

Explain What? I

Most efforts are devoted to supervised ML, and in particular:
specific sorts of tasks, e.g. classification and regression
specific sorts of data, e.g. images, text, or tables
specific sorts of predictors, e.g. neural networks, SVM
i.e. essentially, functions of the form f : X ⊆ Rn → Y ⊆ Rm
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XAI Background XAI Nowadays

Explain What? II

Interpretability–Predictivity trade-off:
In

te
rp

re
ta

b
ili

ty

Predictive Performance

Generalised linear models

Decision trees

K Nearest Neighbours

Random Forest

Support Vector Machines

XGboost

Neural Networks
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XAI Background XAI Nowadays

Explain What? III

Conventionally. . .
. . . linear models, or decision trees/rules are considered interpretable
. . . other kinds of predictors are considered poorly interpretable

hence in need of explanation
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XAI Background XAI Nowadays

Explain What? IV

Our focus is on supervised ML, but XAI is wider than that
explainable unsupervised learning—e.g., clustering [Sabbatini and Calegari, 2022]

explainable reinforcement learning (XRL)[Milani et al., 2022]

explainable planning (XAIP)[Hoffmann and Magazzeni, 2019]

explainable agents and robots (XMAS)[Ciatto et al., 2019, Anjomshoae et al., 2019]

. . .
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XAI Background XAI for Supervised ML
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XAI Background XAI for Supervised ML

Global vs. Local Explanations I

Global explanation
How does a predictor produce its outcomes in general?
e.g. how does a neural network classify images of animals?

Local explanation
How did a predictor produce a particular outcome?
e.g. why did the neural network classify that image as a cat?
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XAI Background XAI for Supervised ML

Global vs. Local Explanations II

About the global/local dichotomy
firstly introduced in [Ribeiro et al., 2016]
along with LIME, i.e. one of the earliest and most successful XAI
techniques
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XAI Background XAI for Supervised ML

Global vs. Local Explanations III

Figure: [Ribeiro et al., 2016] Toy example to present intuition for LIME. The black-box model’s
complex decision function f (unknown to LIME) is represented by the blue/pink background,
which cannot be approximated well by a linear model. The bold red cross is the instance being
explained. LIME samples instances, gets predictions using f , and weighs them by the proximity
to the instance being explained (represented here by size). The dashed line is the learned
explanation that is locally (but not globally) faithful.
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XAI Background XAI for Supervised ML

Overview on XAI approaches I

Four major approaches[Guidotti et al., 2018]

About notation
“model” ≈ “predictor”
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XAI Background XAI for Supervised ML

Overview on XAI approaches II

Model explanation (≈ global explanation)
explanation ≈ interpretable predictor trained to mimic the one to be

explained
w.r.t. the entire input space
e.g. surrogate models (e.g. decision trees)
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XAI Background XAI for Supervised ML

Overview on XAI approaches III

Outcome explanation (≈ local explanation)
explanation ≈ interpretable predictor trained to mimic the one to be

explained
w.r.t. a small portion of the input space
e.g. saliency maps—e.g. LIME[Ribeiro et al., 2016],

SHAP[Lundberg and Lee, 2017]
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XAI Background XAI for Supervised ML

Overview on XAI approaches IV

Model inspection
explanation ≈ representation summarising the behaviour of the predictor

to be explained
w.r.t. a given portion of the input space (or, possibly, all
of it)
e.g. feature importance, sensitivity analysis
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XAI Background XAI for Supervised ML

Overview on XAI approaches V

Transparent box design
just train an interpretable predictor and look at it
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XAI Background Interpretation vs. Explanation
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XAI Background Interpretation vs. Explanation

Interpretation or Explanation?

The two terms are not synonyms
in spite of the fact that they are often used interchangeably

Insights
interpretation ≈ binding objects with meaning

that is what the human mind does
explanation ≈ eliciting relevant aspects of objects—to ease their

interpretation
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XAI Background Interpretation vs. Explanation

The Role of Representations

! this is just a representation of a pipe
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XAI Background Interpretation vs. Explanation

An Abstract Framework for XAI[Ciatto et al., 2020] I

A

X'X

IA(X') > IA(X)

IA(X')IA(X)

X' = E(X)

X object to be explained

A observer agent

IA(·) a function “measuring” the “degree of interpretability” of X , w.r.t. A

E (·) an explanation function, mapping objects into (different) objects

X ′ the result of the explanation, i.e. a more-interpretable object
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XAI Background Interpretation vs. Explanation

An Abstract Framework for XAI[Ciatto et al., 2020] II

Key points
interpretation is subjective
explanation is an operation transforming poorly interpretable objects
into more-interpretable ones
‘interpretability’ does not need to be measurable (only comparisons
matter)
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XAI Background Interpretation vs. Explanation

An Abstract Framework for XAI[Ciatto et al., 2020] III

In the particular case of ML-based AI:

M M'

A

IA(R') - IA(R) > ε
R R'

M' = E(M)

Δf(M, M') < δ

IA(R)

R = r(M) R' = r'(M')

IA(R')
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XAI Background Interpretation vs. Explanation

An Abstract Framework for XAI[Ciatto et al., 2020] IV

we need to explain a model M
having a poorly interpretable representation R (w.r.t. A)

explanation produces another model M ′

having an interpretable representation R ′ (w.r.t. A)
performance difference among M and M ′ (i.e. ∆f (M,M ′)) must be
small (< δ)

or, dually, M ′ must have an high fidelity w.r.t. M

Key points
explanation ≈ search of a surrogate interpretable model
representation is important as much as explanation
explanation must maximise fidelity
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XAI Background Interpretation vs. Explanation

The Role of Interaction

Query(Q)

Recommendation (Q, R)

Why? (Q, R)

MoreDetails(Q, R, E)
loop

Unclear(Q,R,E)

Accept(Q,R,E)

Collision(Q,R,E,
F)

Disapprove(Q,R,E, F)

Reccommendation (R')

[Why, Unclear]

[Collision, Disapprove]

explanation as an interaction protocol
among an explainer/recommender
and explainee

possibly repeating the protocol several
times . . .

. . . until selecting the
explanation/representation which better
suits the explainee
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Explanations via Feature Importance

Next in Line. . .

1 AI, ML & XAI

2 XAI Background

3 Explanations via Feature Importance

4 Explanations via Symbolic Knowledge Extraction

5 Transparent Box Design via Symbolic Knowledge Injection

6 XAI in Practice

Magnini, Ciatto, Omicini (UniBo) Gentle Introduction to XAI ASAI-ER, 2023 56 / 191



Explanations via Feature Importance

Overview I

Insight
quantify each input feature’s contribution to

a single prediction (local explanation)
the predictor’s behavior in general (global explanation)

possibly, select the most relevant features
i.e. the ones contributing the most

represent the importance score accordingly
the representation depends on the sort of data at hand
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Explanations via Feature Importance

Overview II

Which sorts of data?
tabular data → named features — explained via histograms

images → (super-)pixels — explained via masks / heatmaps

text → bag of words / TD-IDF / Word2Vec — explained via words

Magnini, Ciatto, Omicini (UniBo) Gentle Introduction to XAI ASAI-ER, 2023 58 / 191



Explanations via Feature Importance

Overview III

General Remarks about Feature Importance
may be used to explain either the model or the outcome

in both cases, explanations are provided by model inspection
→ data-specific representations play a crucial role

feature selection is a by-product of the explanation process

feature importance computation is commonly
model agnostic (i.e., it works with any sort of ML predictor)

post-hoc (i.e., it occurs after predictors’ training)
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Explanations via Feature Importance Feature Importance via LIME

Focus on. . .

1 AI, ML & XAI
2 XAI Background

Overview on XAI
XAI Nowadays
XAI for Supervised ML
Interpretation vs. Explanation

3 Explanations via Feature Importance
Feature Importance via LIME
Discussion about Feature Importance in LIME

4 Explanations via Symbolic Knowledge Extraction
Discussion

5 Transparent Box Design via Symbolic Knowledge Injection
Focus on input knowledge
Focus on strategy
Example algorithms
Discussion

6 XAI in Practice
Python Tools for Feature Importance
From GitHub
From DockerHub
A Platform for Symbolic Knowledge Injection
From GitHub
From DockerHub
A Platform for Symbolic Knowledge Extraction
From GitHub
From DockerHub
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Explanations via Feature Importance Feature Importance via LIME

Overview I

LIME = Local Interpretable Model-agnostic Explanations[Ribeiro et al., 2016]

model-agnostic and post-hoc means for outcome explanation
works by constructing a local surrogate model around the prediction to
be explained
the predictor to be explained acts as an oracle

may also be exploited as a means for model explanation
by averaging multiple outcome explanations
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Explanations via Feature Importance Feature Importance via LIME

Overview II

To explain a prediction y = f (x̄) s.t.
x̄ = (x1, . . . , xi , . . . , xn), LIME:

trains an interpretable model g
approximating f in the surroundings
of x̄

uses g to compute how much each xi
contributes to y

Interpretable models could be:
linear models
decision trees
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Explanations via Feature Importance Feature Importance via LIME

Algorithm Overview I

Assumptions and prerequisites
Input features may be of any sort (numeric, categorical, pixel, etc.)

Binary interpretable components must be defined for each feature
categorical feature ↔ one-hot encoding

numeric feature ↔ bin discretization
BOW feature ↔ word presence/absence
pixel feature ↔ super-pixel presence/absence

the mapping among features and components must be reversible

A measure of proximity / similarity to x̄
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Explanations via Feature Importance Feature Importance via LIME

Algorithm Overview II

About notation

x̄ ∈ Rn ≡ (x1, . . . , xn) is the input vector containing the original features

x̄ ′ ∈ {0, 1}m ≡ (x ′1, . . . , x
′
m) is the corresponding vector of interpretable

components

f : Rn → Y is the predictor to be explained

g : {0, 1}m → Y is the interpretable predictor constructed by LIME

πx̄(z̄) : Rn → [0, 1] is the proximity measure of some input point z̄ w.r.t.
some pivot point x̄
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Explanations via Feature Importance Feature Importance via LIME

Algorithm Overview III

Algorithm overview
1 Sample N points z̄1, . . . , z̄N around x̄ according to πx̄
2 For each z̄i

1 compute the corresponding interpretable components z̄ ′i . . .
2 . . . and prediction yi = f (z̄i )

3 Use the data items ⟨z̄i , yi ⟩ to train g

g is trained to perform regularization
4 Repeat the process with different hyper-parameters of g
5 Select the g which

maximises the fidelity of g w.r.t. f
while minimizing the complexity of g

6 Use the coefficients of g as measures of feature importance
select the K -best coefficients
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Explanations via Feature Importance Feature Importance via LIME

Algorithm Overview IV

Hyper-parameters of LIME
N: amount of samples generated to explain a single prediction x̄

K : maximum amount of important features to be selected
g : sort of the interpretable model to be trained (e.g., linear, tree)

this commonly implies the sort of regularization to be used
reversible mapping between features and interpretable components

essentially, a binarization process
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Explanations via Feature Importance Feature Importance via LIME

From local to global LIME

1 Select M pivot points X from the input
space

2 For each x̄i ≡ (xi ,1, . . . , xi ,j , . . . , xi ,n′) ∈ X
compute K -best feature importance

produce a M × n′ matrix W . . .
. . . where cell wi,j is the importance of
the j-th component of x̄i

3 Aggregate W column-wise to get global
feature importances

Major issues
How to select the N pivot points?
It only works if all instances have the same features
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Explanations via Feature Importance Feature Importance via LIME

About LIME’s outputs I

Representation of results is quintessential with feature importance:

in tabular data, we may represent the contribution of feature intervals:
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Explanations via Feature Importance Feature Importance via LIME

About LIME’s outputs II

in images, we may highlight the contribution of patches:
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Explanations via Feature Importance Feature Importance via LIME

About LIME’s outputs III

in text, we may highlight the contribution of individual tokens:
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Explanations via Feature Importance Discussion about Feature Importance in LIME

Focus on. . .

1 AI, ML & XAI
2 XAI Background

Overview on XAI
XAI Nowadays
XAI for Supervised ML
Interpretation vs. Explanation

3 Explanations via Feature Importance
Feature Importance via LIME
Discussion about Feature Importance in LIME

4 Explanations via Symbolic Knowledge Extraction
Discussion

5 Transparent Box Design via Symbolic Knowledge Injection
Focus on input knowledge
Focus on strategy
Example algorithms
Discussion

6 XAI in Practice
Python Tools for Feature Importance
From GitHub
From DockerHub
A Platform for Symbolic Knowledge Injection
From GitHub
From DockerHub
A Platform for Symbolic Knowledge Extraction
From GitHub
From DockerHub
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Explanations via Feature Importance Discussion about Feature Importance in LIME

Discussion

Pros
clear and intuitive interpretation of predictions
applicable to any sort of supervised predictor
adaptable to many sorts of data
computational effort is parametric

Cons
more a tool for debugging than a means for explanation
requires a lot of pre-processing
may not fit all sorts of features
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Explanations via Symbolic Knowledge Extraction

Next in Line. . .

1 AI, ML & XAI

2 XAI Background

3 Explanations via Feature Importance

4 Explanations via Symbolic Knowledge Extraction

5 Transparent Box Design via Symbolic Knowledge Injection

6 XAI in Practice
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Explanations via Symbolic Knowledge Extraction

Overview I

Insight
search of a surrogate interpretable model. . .

. . . consisting of symbolic knowledge
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Explanations via Symbolic Knowledge Extraction

Overview II

Definition
Any algorithmic procedure accepting trained sub-symbolic predictors as

input and producing symbolic knowledge as output, in such a way that the
extracted knowledge reflects the behaviour of the predictor with high

fidelity.
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Explanations via Symbolic Knowledge Extraction

Overview III

Example:

→

Class = setosa← PetalWidth ≤ 1.0.

Class = versicolor← PetalLength > 4.9
∧ SepalWidth ∈ [2.9, 3.2].

Class = versicolor← PetalWidth > 1.6.

Class = virginica← SepalWidth ≤ 2.9.

Class = virginica←
SepalLength ∈ [5.4, 6.3].

Class = virginica←
PetalWidth ∈ [1.0, 1.6].
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Explanations via Symbolic Knowledge Extraction

What does ‘symbolic’ actually mean? I

Symbolic representations of knowledge[van Gelder, 1990]

involves a set of symbols,

which can be combined (e.g., concatenated) in (possibly) infinitely
many ways,

following precise syntactical rules, and
where both elementary symbols and any admissible combination of
them can be assigned with meaning

ie each symbol can be mapped into some entity from the domain at hand.

Notable example
formal logic
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Explanations via Symbolic Knowledge Extraction

What does ‘symbolic’ actually mean? II

Opposite notion: distributed representations
where symbols alone have no meaning
unless it is considered along with its neighbourhood

ie any other symbol which is close (according to some notion of closeness)
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Explanations via Symbolic Knowledge Extraction

Plenty of SKE methods from the literature I

Table: Summary of the knowledge-extraction algorithms. Symbol ∗ means that the related
dimension of the algorithm is not bounded. Symbol † means that the output is a power law.

# Method Translucency Task Input Expressiveness Shape
1 [Breiman et al., 1984] P C+R C+D P DT
2 [Quinlan, 1986] P C D P DT
3 [Saito and Nakano, 1988] P C D P L
4 [Clark and Niblett, 1989] P C C+D P L
5 [Masuoka et al., 1990] D (NN) C C F L
6 [Hayashi, 1990] D (NN) C B F L
7 [Towell and Shavlik, 1991] D (NN) C D MN L
8 [Berenji, 1991] D (NN) C C F L
9 [Brunk and Pazzani, 1991] P C C+D P L
10 [Murphy and Pazzani, 1991] P C D MN DT
11 [Horikawa et al., 1992] D (NN) C C F L
12 [Tresp et al., 1992] D (NN) R C P L
13 [Towell and Shavlik, 1993] D (NN) C D P L
14 [Thrun, 1993] D (NN) C C P+MN L
15 [Cohen, 1993] P C C+D P L
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Explanations via Symbolic Knowledge Extraction

Plenty of SKE methods from the literature II

16 [Quinlan, 1993] P C C+D P DT
17 [Fu, 1994] D (NN) C D P L
18 [Halgamuge and Glesner, 1994]D (NN) C C F L
19 [Mitra, 1994] D (NN) C C+D F L
20 [Craven and Shavlik, 1994] P C B P+MN L
21 [Fürnkranz and Widmer, 1994] P C D P L
22 [Sestito and Dillon, 1994] P C C P L
23 [Andrews and Geva, 1995] D (NN) C C+D P L
24 [Matthews and Jagielska, 1995]D (NN) C B F L
25 [Cohen, 1995] P C C+D P L
26 [Pop et al., 1994] P C B P L
27 [Setiono and Liu, 1996] D (NN) C B P L
28 [Tickle et al., 1996] P C B P L
29 [Yuan and Zhuang, 1996] P C D F L
30 [Craven and Shavlik, 1996] P C B P+MN DT
31 [Hong and Lee, 1996] P C C F L
32 [Setiono and Liu, 1997] D (NN3) C C+D O L
33 [Setiono, 1997] D (NN) C D P L
34 [Nauck and Kruse, 1997] D (NN) C D F L
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Explanations via Symbolic Knowledge Extraction

Plenty of SKE methods from the literature III

35 [Saito and Nakano, 1997] D (NN) R C † †
36 [Benítez et al., 1997] D (NN) C+R C F L
37 [Ishibuchi et al., 1997] P C C F L
38 [Taha and Ghosh, 1999] D (NN) C C P L
39 [Taha and Ghosh, 1999] D (NN) C C P L
40 [Krishnan et al., 1999b] D (NN) C B P L
41 [Nauck and Kruse, 1999] D (NN) R D F L
42 [Taha and Ghosh, 1999] P C B P L
43 [Krishnan et al., 1999a] P C C P DT
44 [Schmitz et al., 1999] P C+R C+D P DT
45 [Hong and Chen, 1999] P C C F L
46 [Setiono, 2000] D (NN) C B MN L
47 [Tsukimoto, 2000] D (NN) C C+D P L
48 [Kim and Lee, 2000] D (NN4) C C+D P DT
49 [Setiono and Leow, 2000] D (NN) R C+D P+MN+O DT
50 [Zhou et al., 2000] P C C+D P L
51 [Hong and Chen, 2000] P C C F L
52 [Sato and Tsukimoto, 2001] D (NN3) R C+D P DT
53 [Parpinelli et al., 2001] P C C+D P L
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Explanations via Symbolic Knowledge Extraction

Plenty of SKE methods from the literature IV

54 [Castillo et al., 2001] P C+R C+D F L
55 [Saito and Nakano, 2002] D (NN) R C+D P L
56 [Setiono et al., 2002] D (NN3) R C+D P L
57 [Liu et al., 2002] P C C+D P L
58 [Boz, 2002] P C C+D P DT
59 [Markowska-Kaczmar and Trelak, 2003]P C C+D F L
60 [Zhou et al., 2003] P C C+D P L
61 [Setiono and Thong, 2004] D (NN3) R C+D P L
62 [Fu et al., 2004] D (SVM) C C+D P L
63 [Markowska-Kaczmar and Chumieja, 2004]P C C+D P L
64 [Rabuñal et al., 2004] P C C+D P L
65 [Chen, 2004] P C C P L
66 [Liu et al., 2004] P C C+D P L
67 [Browne et al., 2004] P C C+D P+MN DT
68 [Zhang et al., 2005] D (SVM) C C P L
69 [Barakat and Diederich, 2008]D (SVM) C+R * * *
70 [Fung et al., 2005] D (SVM+LC) C C P L
71 [Chaves et al., 2005] D (SVM) C C F L
72 [Torres and Rocco, 2005] P C C+D P+MN DT
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Explanations via Symbolic Knowledge Extraction

Plenty of SKE methods from the literature V

73 [Etchells and G., 2006] P C C+D P L
74 [He et al., 2006] P C C+D P DT
75 [Huysmans et al., 2006] P R C P L
76 [Bader et al., 2007] D (NN) C B P L
77 [Schetinin et al., 2007] D (DTE) R C P DT
78 [Chen et al., 2007] D (SVM) C C P L
79 [Barakat and Bradley, 2007] D (SVM) C C+D P L
80 [Saad and Wunsch II, 2007] P C C+D O L
81 [Martens et al., 2007] P C C+D P L
82 [Núñez et al., 2008] D (SVM) C C P+O L
83 [Setiono et al., 2008] P C C+D P+O L
84 [Odajima et al., 2008] P C D P L
85 [Konig et al., 2008] P C+R C+D F DT
86 [Bader, 2009] D (NN) C B P L
87 [Martens et al., 2009] D (SVM) C * * *
88 [Lehmann et al., 2010] P C B P L
89 [Augasta and Kathirvalavakumar, 2012]P C C+D P L
90 [Sethi et al., 2012] P C C+D P TA
91 [Zilke et al., 2016] D (NN) R C+D P DT
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Explanations via Symbolic Knowledge Extraction

Plenty of SKE methods from the literature VI

92 [Chan and Chan, 2017] D (NN) R C P L
93 [Yedjour and Benyettou, 2018] P C B P L
94 [Chan and Chan, 2020] D (NN) R C P L
95 [Wang et al., 2020] D (DTE) C C P L
96 [Sabbatini et al., 2021] P R C P L
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Explanations via Symbolic Knowledge Extraction

Taxonomy of SKE methods I
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Explanations via Symbolic Knowledge Extraction

Taxonomy of SKE methods II

target AI task for the predictor undergoing extraction
classification i.e., f : X ⊆ Rn → Y s.t. |Y| = k

regression i.e., f : X ⊆ Rn → Y ⊆ Rm

translucency what kind of ML predictor does the SKE method support?
pedagogical: any supervised predictor
decompositional: a particular sort of ML predictor (e.g. NN,

SVM, DT)

input data supported by the predictor undergoing extraction
binary: X ≡ {0, 1}n

discrete: X ∈ {x1, . . . , xn}n
continuous: X ⊆ Rn
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Explanations via Symbolic Knowledge Extraction

Taxonomy of SKE methods III

shape of the extracted knowledge
rule list: i.e. ordered sequences of if-then-else rules

decision tree: hierarchical set of if-then-else rules involving a
comparison among a variable and a constant

decision table: 2D tables summarising decisions for each
possible assignment of variables
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Explanations via Symbolic Knowledge Extraction

Taxonomy of SKE methods IV

expressiveness of the extracted knowledge
propositional: boolean statements + logic connectives

there including arithmetic comparisons
among variables and constants

fuzzy: hierarchical set of if-then-else rules involving a
comparison among a variable and a constant

oblique: boolean statements + logic connectives +
arithmetic comparisons

M-of-N: any of the above + statements like
m − of− {ϕ1, . . . , ϕn}
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Explanations via Symbolic Knowledge Extraction

Examples of methods and their classification – CART I

CART:[Breiman et al., 1984] classification and regression trees
translucency: pedagogical
target AI task: classification OR regression
input data: binary OR discrete OR continuous
shape: decision tree
expressiveness: propositional
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Explanations via Symbolic Knowledge Extraction

Examples of methods and their classification – CART II

Figure: An example decision tree estimating the probability of kyphosis after spinal surgery, given
the age of the patient and the vertebra at which surgery was started[Wikipedia contributors, 2021].
Notice that all decision trees subtend a partition of the input space, and that those trees
themselves provide intelligible representations of how predictions are attained.
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Explanations via Symbolic Knowledge Extraction

Examples of methods and their classification – CART III

Using CART for SKE
1 generate a ‘fake’ dataset by feeding the predictor undergoing SKE

2 train a decision tree on the ‘fake’ dataset
3 compute fidelity and repeat step 2 until satisfied
4 [opt.] rewrite the tree as a list of rules
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Explanations via Symbolic Knowledge Extraction

Examples of methods and their classification – GridEx I

GridEx:[Sabbatini et al., 2021] grid extractor
translucency: pedagogical
target AI task: regression
input data: continuous
shape: rule list
expressiveness: propositional
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Explanations via Symbolic Knowledge Extraction

Examples of methods and their classification – GridEx II

Figure: Example of GridEx’s hyper-cube partitioning (merging step not reported)

(a)
Surrounding
cube

(b) Iteration
1 (p1 = 2)

(c) Iteration
2 (p2 = 3).

(d) Iteration
3 (p3 = 2).
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Explanations via Symbolic Knowledge Extraction

Examples of methods and their classification – GridEx III

Using GridEx for SKE
1 partition the input space into pn1 hypercubes

evenly splitting the n dimensions into p1 bins
2 partition each non empty-region into pn2 hypercubes

evenly splitting the n dimensions into p2 bins
3 repeat the splitting arbitrarily
4 assign a prediction with each non-empty partition (e.g. average value)
5 write an if-then rule for each non-empty partition:

if : expressions delimiting the partition
then: prediction of that partition
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Explanations via Symbolic Knowledge Extraction

Examples of methods and their classification – REFANN I

REFANN:[Setiono et al., 2002] rule extraction from function approximating
NN

translucency: decompositional (3-layered NN)
target AI task: regression
input data: continuous OR discrete
shape: rule list
expressiveness: propositional

Magnini, Ciatto, Omicini (UniBo) Gentle Introduction to XAI ASAI-ER, 2023 95 / 191



Explanations via Symbolic Knowledge Extraction

Examples of methods and their classification – REFANN II

Figure: An example 3-layered multi-layer perceptron (MLP)
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Explanations via Symbolic Knowledge Extraction

Examples of methods and their classification – REFANN III

Using REFANN for SKE
1 prune the network’s hidden units and input neurons
2 approximate the hidden units’ activation function with a 2-steps-wise

linear function
3 approximate the output units’ activation function with a 3- or

5-step-wise linear function
4 rewrite each output neuron as a linear combination of the input neuron
5 rewrite the linear combinations as rules

hence attaining a list of rules
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Explanations via Symbolic Knowledge Extraction

Examples of methods and their classification – REFANN IV

Figure: [Setiono et al., 2002] The tanh(x) function (solid curve) for x ∈ [0, xm] is approximated by
a 2-piece linear function (dashed lines)
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Explanations via Symbolic Knowledge Extraction

Examples of methods and their classification – REFANN V

Figure: [Setiono et al., 2002] The tanh(x) function (solid curve) for x ∈ [0, xm] is approximated
by a 3-piece linear function (dashed lines)
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Explanations via Symbolic Knowledge Extraction Discussion

Focus on. . .

1 AI, ML & XAI
2 XAI Background

Overview on XAI
XAI Nowadays
XAI for Supervised ML
Interpretation vs. Explanation

3 Explanations via Feature Importance
Feature Importance via LIME
Discussion about Feature Importance in LIME

4 Explanations via Symbolic Knowledge Extraction
Discussion

5 Transparent Box Design via Symbolic Knowledge Injection
Focus on input knowledge
Focus on strategy
Example algorithms
Discussion

6 XAI in Practice
Python Tools for Feature Importance
From GitHub
From DockerHub
A Platform for Symbolic Knowledge Injection
From GitHub
From DockerHub
A Platform for Symbolic Knowledge Extraction
From GitHub
From DockerHub
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Explanations via Symbolic Knowledge Extraction Discussion

Notable Remarks

commitment to a particular output shape / expressiveness
to preserve both human- and machine-interpretability
other syntaxes may exist

discretization of the input space
discretization of the output space
features should have semantics per se
further refinements may be applied to rules
rules constitute global explanations
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Explanations via Symbolic Knowledge Extraction Discussion

Current Limitations

tabular data as input → doesn’t really work with images
high dimensional datasets → very large, poorly readable rules
highly variable input spaces → many rules → poor readability

Magnini, Ciatto, Omicini (UniBo) Gentle Introduction to XAI ASAI-ER, 2023 102 / 191



Explanations via Symbolic Knowledge Extraction Discussion

Future research activities

target images or highly dimensional data in general
target reinforcement learning (when based on NN)
target unsupervised learning
design and prototype your own extraction algorithm
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Transparent Box Design via Symbolic Knowledge Injection

Next in Line. . .

1 AI, ML & XAI

2 XAI Background

3 Explanations via Feature Importance

4 Explanations via Symbolic Knowledge Extraction

5 Transparent Box Design via Symbolic Knowledge Injection

6 XAI in Practice
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Transparent Box Design via Symbolic Knowledge Injection

Why SKI?

There are several benefits:
prevent the predictor to become a black-box!;
reduce learning time;
reduce the data size needed for training;
improve predictor’s accuracy;
build a predictor that behave as a logic engine.
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Transparent Box Design via Symbolic Knowledge Injection

Symbolic Knowledge Injection I

Key insights:

Altering ML predictors. . .

. . . to make they comply to user-provided knowledge. . .

. . . which is represented in symbolic form
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Transparent Box Design via Symbolic Knowledge Injection

Symbolic Knowledge Injection II

We define SKI as:
any algorithmic procedure affecting how sub-symbolic predictors draw their
inferences in such a way that predictions are either computed as a function
of, or made consistent with, some given symbolic knowledge*.

* a wide definition that includes the vast majority of the works in the main
surveys [Besold et al., 2017, Xie et al., 2019, Calegari et al., 2020].
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Transparent Box Design via Symbolic Knowledge Injection

Symbolic Knowledge Injection III

General workflow:
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Transparent Box Design via Symbolic Knowledge Injection

Taxonomy of SKI methods I
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Transparent Box Design via Symbolic Knowledge Injection

Taxonomy of SKI methods II

input knowledge how is the knowledge to-be-injected represented?
commonly, some sub-set of first-order logic (FOL)

target predictor which predictors can knowledge be injected into?
mostly, neural networks

strategy how does injection actually work?
guided learning the input knowledge is used to guide the training
process
structuring the internal composition of the predictor is (re-)structured
to reflect the input knowledge
embedding the input knowledge is converted into numeric array form

purpose why is knowledge injected in the first place?
knowledge manipulation improve / extend / reason about symbol
knowledge—subsymbolically
learning support improve the sub-symbolic predictor (e.g. speed, size,
etc.)
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Transparent Box Design via Symbolic Knowledge Injection Focus on input knowledge

Focus on. . .

1 AI, ML & XAI
2 XAI Background

Overview on XAI
XAI Nowadays
XAI for Supervised ML
Interpretation vs. Explanation

3 Explanations via Feature Importance
Feature Importance via LIME
Discussion about Feature Importance in LIME

4 Explanations via Symbolic Knowledge Extraction
Discussion

5 Transparent Box Design via Symbolic Knowledge Injection
Focus on input knowledge
Focus on strategy
Example algorithms
Discussion

6 XAI in Practice
Python Tools for Feature Importance
From GitHub
From DockerHub
A Platform for Symbolic Knowledge Injection
From GitHub
From DockerHub
A Platform for Symbolic Knowledge Extraction
From GitHub
From DockerHub
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Transparent Box Design via Symbolic Knowledge Injection Focus on input knowledge

About Logic I

How to represent knowledge?

expressiveness–tractability
trade-off[Levesque and Brachman, 1987, Brachman and Levesque, 2004]
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Transparent Box Design via Symbolic Knowledge Injection Focus on input knowledge

About Logic II

In practice, virtually all SKI algorithms deal with:

datalog;

description logics (a.k.a. knowledge graph, KG);

propositional logic (PL).
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Transparent Box Design via Symbolic Knowledge Injection Focus on input knowledge

First Order Logic I

Overview
FOL is extremely flexible and expressive

variables, quantifiers, structured terms, negation, logic connectives

one can use recursion to define recursive structures;
possibly, intensionally—i.e. without extensively describing everything

maybe too “powerful” for canonical NN
most NN are essentially DAG
training via backpropagation[Baldi and Sadowski, 2016] requires no cycles

→ recursion not supported
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Transparent Box Design via Symbolic Knowledge Injection Focus on input knowledge

First Order Logic II

Example of FOL knowledge base (Peano numbers)

natural(zero)
∀X : natural(X )→ natural(successorOf(X ))
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Transparent Box Design via Symbolic Knowledge Injection Focus on input knowledge

Horn Clauses (≈ Prolog) I

Overview
sub-set of FOL with:

implicit quantifiers
limited set of logic connectives

still supports recursion

nice expressiveness–tractability trade-off
often exploited to design/realise automatic reasoning

Magnini, Ciatto, Omicini (UniBo) Gentle Introduction to XAI ASAI-ER, 2023 116 / 191



Transparent Box Design via Symbolic Knowledge Injection Focus on input knowledge

Horn Clauses (≈ Prolog) II

Example of Horn clauses (Peano numbers)

natural(zero)
natural(successorOf(X ))← natural(X )
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Transparent Box Design via Symbolic Knowledge Injection Focus on input knowledge

Datalog I

Overview
sub-set of Horn clauses with no recursion

good for SKI!

Peano numbers in Datalog
cannot be represented!

(as they require recursion)
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Transparent Box Design via Symbolic Knowledge Injection Focus on input knowledge

Description Logics (≈ Knowledge Graphs) I

Overview
Very restricted subset of FOL

only constants, variables and n-ary predicates with n ≤ 2;

Everything is represented via collections of triplets of the form:

⟨a f b⟩ or f (a, b)

where a, b are entities, and f is a (binary) relationship

essentially, directed graph:
nodes (i.e. entities) represent individuals
edges (i.e. relationships) represent relations among individuals
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Transparent Box Design via Symbolic Knowledge Injection Focus on input knowledge

Description Logics (≈ Knowledge Graphs) II
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Transparent Box Design via Symbolic Knowledge Injection Focus on input knowledge

Propositional Logic I

Overview
The simplest subset of FOL

no quantifiers, no terms, no n-ary predicates with n > 0
essentially, just Boolean algebra

low expressiveness, but easy to work with
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Transparent Box Design via Symbolic Knowledge Injection Focus on input knowledge

Propositional Logic II

Example

big_petal ∧ average_sepal → virginica.

big_petal ∧ ¬average_sepal → versicolor.

small_petal → setosa.

average_sepal ≡ (3 ≤ SepalWidth < 5)
big_petal ≡ (PetalLength > 3)

small_petal ≡ ¬big_petal ≡ (PetalLength ≤ 3)
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Transparent Box Design via Symbolic Knowledge Injection Focus on strategy

Focus on. . .

1 AI, ML & XAI
2 XAI Background

Overview on XAI
XAI Nowadays
XAI for Supervised ML
Interpretation vs. Explanation

3 Explanations via Feature Importance
Feature Importance via LIME
Discussion about Feature Importance in LIME

4 Explanations via Symbolic Knowledge Extraction
Discussion

5 Transparent Box Design via Symbolic Knowledge Injection
Focus on input knowledge
Focus on strategy
Example algorithms
Discussion

6 XAI in Practice
Python Tools for Feature Importance
From GitHub
From DockerHub
A Platform for Symbolic Knowledge Injection
From GitHub
From DockerHub
A Platform for Symbolic Knowledge Extraction
From GitHub
From DockerHub
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Transparent Box Design via Symbolic Knowledge Injection Focus on strategy

Strategy 1: Guided Learning I

learning is essentially an optimizionation process
. . . often performed via gradient descent

ie minimising a loss function
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Transparent Box Design via Symbolic Knowledge Injection Focus on strategy

Strategy 1: Guided Learning II

SKI via Guided Learning
1 Input knowledge is converted into a cost factor

ie the more the knowledge is violated, the higher the cost
2 The loss function is altered to include that cost factor

e.g. as a simple additive regularisation factor
3 The predictor is then trained as usual

→ Training minimises both the predictors’ error and inconsistency w.r.t.
knowledge
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Transparent Box Design via Symbolic Knowledge Injection Focus on strategy

Strategy 1: Guided Learning III

 likes (john, jane).
 likes(jane, john).
 likes(jack, jane).
 friends(X, Y) :- likes(X, Y), likes(Y, X). 

James

Davis L.A.

Lakersplays_for

plays_
for

lives_in

located_inlocated_in

Dataset
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Transparent Box Design via Symbolic Knowledge Injection Focus on strategy

Strategy 2: Structuring I

SKI via Structuring
The predictor’s inner architecture is shaped to“mimic” the knowledge
Shaping is predictor-dependent
e.g. for neural networks, this means creating ad-hoc layers

where small groups of neurons are used to compute pieces of a formula

→ The predictor directly exploits the knowledge during inference
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Transparent Box Design via Symbolic Knowledge Injection Focus on strategy

Strategy 2: Structuring II

 likes (john, jane).
 likes(jane, john).
 likes(jack, jane).
 friends(X, Y) :- likes(X, Y), likes(Y, X). 

James

Davis L.A.

Lakersplays_for

plays_
for

lives_in

located_inlocated_in Dataset
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Transparent Box Design via Symbolic Knowledge Injection Focus on strategy

Strategy 2: Structuring III

Example:

A← B ∧ C ∧ ¬D.
A← E ∧ F .
B ← true.

↔
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Transparent Box Design via Symbolic Knowledge Injection Focus on strategy

Strategy 3: Embedding I

SKI via Structuring
Input knowledge is converted into numeric tensor(s)
These are used as the training set for an ordinary learning process

→ The predictor is trained and used ‘as usual’

 likes (john, jane).
 likes(jane, john).
 likes(jack, jane).
 friends(X, Y) :- likes(X, Y), likes(Y, X). 

James

Davis L.A.

Lakersplays_for

plays_
for

lives_in

located_inlocated_in Embedder 0.1 0.7 0.9 0.5

Dataset
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Transparent Box Design via Symbolic Knowledge Injection Focus on strategy

Strategy 3: Embedding II

Example: knowledge graph embedding[Wang et al., 2017]

entities and relations are embedded into continuos vector spaces;

scoring function fr (h, t) defined on each fact (h, r , t) to measure its
plausibility;
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Transparent Box Design via Symbolic Knowledge Injection Focus on strategy

Strategy 3: Embedding III
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Transparent Box Design via Symbolic Knowledge Injection Example algorithms

Focus on. . .

1 AI, ML & XAI
2 XAI Background

Overview on XAI
XAI Nowadays
XAI for Supervised ML
Interpretation vs. Explanation

3 Explanations via Feature Importance
Feature Importance via LIME
Discussion about Feature Importance in LIME

4 Explanations via Symbolic Knowledge Extraction
Discussion

5 Transparent Box Design via Symbolic Knowledge Injection
Focus on input knowledge
Focus on strategy
Example algorithms
Discussion

6 XAI in Practice
Python Tools for Feature Importance
From GitHub
From DockerHub
A Platform for Symbolic Knowledge Injection
From GitHub
From DockerHub
A Platform for Symbolic Knowledge Extraction
From GitHub
From DockerHub

Magnini, Ciatto, Omicini (UniBo) Gentle Introduction to XAI ASAI-ER, 2023 133 / 191



Transparent Box Design via Symbolic Knowledge Injection Example algorithms

Knowledge Injection via Network Structuring[Magnini et al., 2022a] I

KINS
purpose → learning support

target predictor → neural networks
strategy → structuring

input logic → stratified Datalog with negation

Magnini, Ciatto, Omicini (UniBo) Gentle Introduction to XAI ASAI-ER, 2023 134 / 191



Transparent Box Design via Symbolic Knowledge Injection Example algorithms

Knowledge Injection via Network Structuring[Magnini et al., 2022a] II
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Transparent Box Design via Symbolic Knowledge Injection Example algorithms

Knowledge Injection via Network Structuring[Magnini et al., 2022a] III

Formula C. interpretation Formula C. interpretation
J¬ϕK η(1− JϕK) Jϕ ≤ ψK η(1 + JψK− JϕK)
Jϕ ∧ ψK η(min(JϕK, JψK)) Jclass(X̄ , yi )← ψK JψK∗

Jϕ ∨ ψK η(max(JϕK, JψK)) Jexpr(X̄ )K expr(JX̄ K)
Jϕ = ψK η(J¬(ϕ ̸= ψ)K) JtrueK 1
Jϕ ̸= ψK η(|JϕK− JψK|) JfalseK 0
Jϕ > ψK η(1

2 + JϕK− JψK) JX K x
Jϕ ≥ ψK η(1 + JϕK− JψK) JkK k
Jϕ < ψK η(1

2 + JψK− JϕK) Jp(X̄ )K∗∗ Jψ1 ∨ . . . ∨ ψkK

∗ encodes the value for the i th output
∗∗ assuming p is defined by k clauses of the form:

p(X̄ )← ψ1, . . . , p(X̄ )← ψk

Magnini, Ciatto, Omicini (UniBo) Gentle Introduction to XAI ASAI-ER, 2023 136 / 191



Transparent Box Design via Symbolic Knowledge Injection Example algorithms

Knowledge Injection via Network Structuring[Magnini et al., 2022a] IV
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Transparent Box Design via Symbolic Knowledge Injection Example algorithms

Knowledge Injection via Lambda Layer[Magnini et al., 2022b] I

KILL
purpose → learning support

target predictor → neural networks
strategy → guided learning

input logic → stratified Datalog with negation
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Transparent Box Design via Symbolic Knowledge Injection Example algorithms

Knowledge Injection via Lambda Layer[Magnini et al., 2022b] II
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Transparent Box Design via Symbolic Knowledge Injection Example algorithms

Knowledge Injection via Lambda Layer[Magnini et al., 2022b] III

Formula C. interpretation Formula C. interpretation
J¬ϕK η(1− JϕK) Jϕ ≤ ψK η(JϕK− JψK)
Jϕ ∧ ψK η(max(JϕK, JψK)) Jclass(X̄ , yi )← ψK JψK∗

Jϕ ∨ ψK η(min(JϕK, JψK)) Jexpr(X̄ )K expr(JX̄ K)
Jϕ = ψK η(|JϕK− JψK|) JtrueK 0
Jϕ ̸= ψK J¬(ϕ = ψ)K JfalseK 1
Jϕ > ψK η(0.5− JϕK + JψK) JX K x
Jϕ ≥ ψK η(JψK− JϕK) JkK k
Jϕ < ψK η(0.5 + JϕK− JψK) Jp(X̄ )K∗∗ Jψ1 ∨ . . . ∨ ψkK

∗ encodes the penalty for the i th neuron
∗∗ assuming predicate p is defined by k clauses of the form:

p(X̄ )← ψ1, . . . , p(X̄ )← ψk
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Transparent Box Design via Symbolic Knowledge Injection Discussion

Focus on. . .

1 AI, ML & XAI
2 XAI Background

Overview on XAI
XAI Nowadays
XAI for Supervised ML
Interpretation vs. Explanation

3 Explanations via Feature Importance
Feature Importance via LIME
Discussion about Feature Importance in LIME

4 Explanations via Symbolic Knowledge Extraction
Discussion

5 Transparent Box Design via Symbolic Knowledge Injection
Focus on input knowledge
Focus on strategy
Example algorithms
Discussion

6 XAI in Practice
Python Tools for Feature Importance
From GitHub
From DockerHub
A Platform for Symbolic Knowledge Injection
From GitHub
From DockerHub
A Platform for Symbolic Knowledge Extraction
From GitHub
From DockerHub
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Transparent Box Design via Symbolic Knowledge Injection Discussion

Notable Remarks

knowledge bases should express relations about input–output pairs
embedding implies extensional representation of knowledge

guided learning, and structuring support intensional knowledge

propositional knowledge implies binarising the I/O spaces

Magnini, Ciatto, Omicini (UniBo) Gentle Introduction to XAI ASAI-ER, 2023 142 / 191



Transparent Box Design via Symbolic Knowledge Injection Discussion

Current Limitations

support for regression is preliminary
recursive data structures are not supported
recursive clauses are not supported
extensional representation cost storage

not always possible

guided learning works poorly with lacking data
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Transparent Box Design via Symbolic Knowledge Injection Discussion

Future research activities

foundational: address recursion
practical: address regression
is SKI possible outside the NN domain?
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XAI in Practice

Next in Line. . .

1 AI, ML & XAI

2 XAI Background

3 Explanations via Feature Importance

4 Explanations via Symbolic Knowledge Extraction

5 Transparent Box Design via Symbolic Knowledge Injection

6 XAI in Practice
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XAI in Practice Python Tools for Feature Importance

Focus on. . .

1 AI, ML & XAI
2 XAI Background

Overview on XAI
XAI Nowadays
XAI for Supervised ML
Interpretation vs. Explanation

3 Explanations via Feature Importance
Feature Importance via LIME
Discussion about Feature Importance in LIME

4 Explanations via Symbolic Knowledge Extraction
Discussion

5 Transparent Box Design via Symbolic Knowledge Injection
Focus on input knowledge
Focus on strategy
Example algorithms
Discussion

6 XAI in Practice
Python Tools for Feature Importance
From GitHub
From DockerHub
A Platform for Symbolic Knowledge Injection
From GitHub
From DockerHub
A Platform for Symbolic Knowledge Extraction
From GitHub
From DockerHub
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XAI in Practice Python Tools for Feature Importance

Python Library for LIME I

Key components
LimeTabularExplainer — explainer for predictions on tabular data

it can be used for both classification and regression tasks

LimeImageExplainer — explainer for predictions on image data
image classification tasks

LimeTextExplainer — explainer for predictions on text data
text classification tasks

Magnini, Ciatto, Omicini (UniBo) Gentle Introduction to XAI ASAI-ER, 2023 147 / 191



XAI in Practice Python Tools for Feature Importance

Python Library for LIME II

Unified API for Explainers
the explanation for one data sample can be obtained by the
explain_instance method, it has several parameters
e.g. predict_fn, num_sample, num_features
explain_instance gives an Explanation (or an
ImageExplanation) object. It contains information about the domain
(e.g., features, class, bins) and, of course, about the explanation of
the data sample
e.g. as_list, as_html to get the explanation as a textual list or an image
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XAI in Practice Python Tools for Feature Importance

Tutorial

Two ways to reproduce the tutorial:

GitHub Repository (long way)
https://github.com/pikalab-unibo/demo-lime

DockerHub Images (quick way)
https://hub.docker.com/r/pikalab/demo-lime/tags
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XAI in Practice From GitHub
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XAI for Supervised ML
Interpretation vs. Explanation

3 Explanations via Feature Importance
Feature Importance via LIME
Discussion about Feature Importance in LIME

4 Explanations via Symbolic Knowledge Extraction
Discussion

5 Transparent Box Design via Symbolic Knowledge Injection
Focus on input knowledge
Focus on strategy
Example algorithms
Discussion
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Python Tools for Feature Importance
From GitHub
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A Platform for Symbolic Knowledge Injection
From GitHub
From DockerHub
A Platform for Symbolic Knowledge Extraction
From GitHub
From DockerHub
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XAI in Practice From GitHub

How to set the tutorial up from GitHub I

Enviromental pre-requisites
Python 3.9.x

Git

1 git clone https://github.com/pikalab-unibo/demo-lime
2 cd demo-lime
3 pip install -r requirements.txt
4 jupyter notebook
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XAI in Practice From GitHub

How to set the tutorial up from GitHub II

5 Your browser should automatically open showing the following page:

6 open the demo-lime.ipynb notebook
7 listen to the speaker presenting the tutorial =)
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XAI in Practice From DockerHub

Focus on. . .

1 AI, ML & XAI
2 XAI Background

Overview on XAI
XAI Nowadays
XAI for Supervised ML
Interpretation vs. Explanation

3 Explanations via Feature Importance
Feature Importance via LIME
Discussion about Feature Importance in LIME

4 Explanations via Symbolic Knowledge Extraction
Discussion

5 Transparent Box Design via Symbolic Knowledge Injection
Focus on input knowledge
Focus on strategy
Example algorithms
Discussion

6 XAI in Practice
Python Tools for Feature Importance
From GitHub
From DockerHub
A Platform for Symbolic Knowledge Injection
From GitHub
From DockerHub
A Platform for Symbolic Knowledge Extraction
From GitHub
From DockerHub
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XAI in Practice From DockerHub

How to set the tutorial up via Docker I

Enviromental pre-requisites
Docker

1

DOCKER_IMAGE=

{
pikalab/demo-lime:latest on most computers
pikalab/demo-lime:latest-apple-m1 on Apple M1 computers

2 docker pull $DOCKER_IMAGE
in case of lacking Internet access:

docker image load -i /path/to/local/image/file.tar

3 docker run -it –rm –name demo-lime -p 8888:8888
$DOCKER_IMAGE

4 Some textual output such as the following one should appear:
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XAI in Practice From DockerHub

How to set the tutorial up via Docker II

�
1 [I 09:51:46.940 NotebookApp] Writing notebook server cookie secret to /root/.local/

share/jupyter/runtime/notebook_cookie_secret
2 [I 09:51:47.159 NotebookApp] Serving notebooks from local directory: /notebook
3 [I 09:51:47.159 NotebookApp] Jupyter Notebook 6.5.2 is running at:
4 [I 09:51:47.159 NotebookApp] http :// cb0a3641caf0 :8888/? token =2

b02d31671c6ad9e9cf8e036eb6962d3592af9cfdd5e60bd
5 [I 09:51:47.159 NotebookApp] or http ://127.0.0.1:8888/? token=2

b02d31671c6ad9e9cf8e036eb6962d3592af9cfdd5e60bd
6 [I 09:51:47.160 NotebookApp] Use Control -C to stop this server and shut down all

kernels (twice to skip confirmation).
7 [C 09:51:47.162 NotebookApp]
8
9 To access the notebook , open this file in a browser:

10 file :/// root/.local/share/jupyter/runtime/nbserver -7-open.html
11 Or copy and paste one of these URLs:
12 http :// cb0a3641caf0 :8888/? token=2

b02d31671c6ad9e9cf8e036eb6962d3592af9cfdd5e60bd
13 or http ://127.0.0.1:8888/? token =2 b02d31671c6ad9e9cf8e036eb6962d3592af9cfdd5e60bd
� �
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XAI in Practice From DockerHub

How to set the tutorial up via Docker III

5 Copy-paste into your browser any link of the form:

http://cb0a3641caf0:8888/?token=TOKEN
6 Your browser should now be showing the following page:

7 open the demo-lime.ipynb notebook
8 listen to the speaker presenting the tutorial =)
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XAI in Practice A Platform for Symbolic Knowledge Injection

Focus on. . .
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6 XAI in Practice
Python Tools for Feature Importance
From GitHub
From DockerHub
A Platform for Symbolic Knowledge Injection
From GitHub
From DockerHub
A Platform for Symbolic Knowledge Extraction
From GitHub
From DockerHub
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XAI in Practice A Platform for Symbolic Knowledge Injection

Overall Design I
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XAI in Practice A Platform for Symbolic Knowledge Injection

Overall Design II

Key components:

injector: any entity capable of injecting knowledge into a sub-symbolic
predictor

it simply alters/reconfigures the predictor. . .
. . . which should be trained after the injector operates

predictor: the partially-trained classifier/regressor where knowledge
should be injected into

untrained is ok too

formula: formal representation of the symbolic knowledge to be
injected

e.g. in Prolog or FOL syntax
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XAI in Practice A Platform for Symbolic Knowledge Injection

Overall Design III

Unified API for SKI
1 interface for Injector, several implementations
e.g. KBANN, KINS, KILL, etc.
1 interface for Formula, several implementations
e.g. Datalog, Propositional, etc.
1 interface for Predictor, currently a TF model
e.g. different kinds of NN
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XAI in Practice A Platform for Symbolic Knowledge Injection

API Design I

logic

ski

fuzzifiers

Formula

data structure
for a logic rule

Theory

list[Formula] knowledge
dict[str, int] feature_map
dict[str, int] class_map

Injector

Model predictor
Str fuzzifier

inject(Theory theory): Model

uneducated

KINS

int layer
KILL

KBANN

float omega
float gamma

hyper-parameters of the algorithms

Fuzzifier

visit(list[Formula] knowledge): any

Transforms symbolic rules
into a sub-symbolic data structure

1

n

1

1
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XAI in Practice A Platform for Symbolic Knowledge Injection

API Design II

Remarks
The user only needs to know:

the particular injector to exploit (and its parameters)
the particular parser to decode logic rules
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XAI in Practice A Platform for Symbolic Knowledge Injection

API Design III

Underlying symbolic AI library (e.g. 2P-Kt[Ciatto et al., 2021]), providing:

Rule a semantic, intelligible representation of the function mapping
Predictor’s inputs into the corresponding outputs, for a
particular portion of the input space;

Theory an ordered collection of rules.
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XAI in Practice A Platform for Symbolic Knowledge Injection

Tutorial

Two ways to reproduce the tutorial:

GitHub Repository (long way)
https://github.com/psykei/demo-psyki-python

DockerHub Images (quick way)
https://hub.docker.com/r/pikalab/prima-tutorial-2022/tags
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XAI in Practice From GitHub

Focus on. . .

1 AI, ML & XAI
2 XAI Background

Overview on XAI
XAI Nowadays
XAI for Supervised ML
Interpretation vs. Explanation

3 Explanations via Feature Importance
Feature Importance via LIME
Discussion about Feature Importance in LIME

4 Explanations via Symbolic Knowledge Extraction
Discussion

5 Transparent Box Design via Symbolic Knowledge Injection
Focus on input knowledge
Focus on strategy
Example algorithms
Discussion

6 XAI in Practice
Python Tools for Feature Importance
From GitHub
From DockerHub
A Platform for Symbolic Knowledge Injection
From GitHub
From DockerHub
A Platform for Symbolic Knowledge Extraction
From GitHub
From DockerHub
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XAI in Practice From GitHub

How to set the tutorial up from GitHub I

Enviromental pre-requisites
Python 3.9.x

JDK ≥ 11

Git

1 git clone https://github.com/psykei/demo-psyki-python
2 cd demo-psyki-python
3 pip install -r requirements.txt
4 export PYTHONPATH="$(pwd)"
5 jupyter notebook
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XAI in Practice From GitHub

How to set the tutorial up from GitHub II

6 Your browser should automatically open showing the following page:

7 open the *.ipynb notebooks in the notebook folder
8 listen to the speaker presenting the tutorial =)
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XAI in Practice From DockerHub

Focus on. . .

1 AI, ML & XAI
2 XAI Background

Overview on XAI
XAI Nowadays
XAI for Supervised ML
Interpretation vs. Explanation

3 Explanations via Feature Importance
Feature Importance via LIME
Discussion about Feature Importance in LIME

4 Explanations via Symbolic Knowledge Extraction
Discussion

5 Transparent Box Design via Symbolic Knowledge Injection
Focus on input knowledge
Focus on strategy
Example algorithms
Discussion

6 XAI in Practice
Python Tools for Feature Importance
From GitHub
From DockerHub
A Platform for Symbolic Knowledge Injection
From GitHub
From DockerHub
A Platform for Symbolic Knowledge Extraction
From GitHub
From DockerHub
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XAI in Practice From DockerHub

How to set the tutorial up via Docker I

Enviromental pre-requisites
Docker

1

DOCKER_IMAGE=


pikalab/demo-psyki-python:latest

(on most computers)
pikalab/demo-psyki-python:latest-apple-m1

(on Apple M1 computers)
2 docker pull $DOCKER_IMAGE

in case of lacking Internet access:
docker image load -i /path/to/local/image/file.tar

3 docker run -it –rm –name demo-psyki-python -p 8888:8888
$DOCKER_IMAGE
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XAI in Practice From DockerHub

How to set the tutorial up via Docker II

4 Some textual output such as the following one should appear:�
1 [I 09:51:46.940 NotebookApp] Writing notebook server cookie secret to /root/.local/

share/jupyter/runtime/notebook_cookie_secret
2 [I 09:51:47.159 NotebookApp] Serving notebooks from local directory: /notebook
3 [I 09:51:47.159 NotebookApp] Jupyter Notebook 6.5.2 is running at:
4 [I 09:51:47.159 NotebookApp] http :// cb0a3641caf0 :8888/? token =2

b02d31671c6ad9e9cf8e036eb6962d3592af9cfdd5e60bd
5 [I 09:51:47.159 NotebookApp] or http ://127.0.0.1:8888/? token=2

b02d31671c6ad9e9cf8e036eb6962d3592af9cfdd5e60bd
6 [I 09:51:47.160 NotebookApp] Use Control -C to stop this server and shut down all

kernels (twice to skip confirmation).
7 [C 09:51:47.162 NotebookApp]
8
9 To access the notebook , open this file in a browser:

10 file :/// root/.local/share/jupyter/runtime/nbserver -7-open.html
11 Or copy and paste one of these URLs:
12 http :// cb0a3641caf0 :8888/? token=2

b02d31671c6ad9e9cf8e036eb6962d3592af9cfdd5e60bd
13 or http ://127.0.0.1:8888/? token =2 b02d31671c6ad9e9cf8e036eb6962d3592af9cfdd5e60bd
� �
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XAI in Practice From DockerHub

How to set the tutorial up via Docker III

5 Copy-paste into your browser any link of the form:

http://cb0a3641caf0:8888/?token=TOKEN
6 Your browser should now be showing the following page:

7 open the *.ipynb notebooks
8 listen to the speaker presenting the tutorial =)
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XAI in Practice A Platform for Symbolic Knowledge Extraction

Focus on. . .

1 AI, ML & XAI
2 XAI Background

Overview on XAI
XAI Nowadays
XAI for Supervised ML
Interpretation vs. Explanation

3 Explanations via Feature Importance
Feature Importance via LIME
Discussion about Feature Importance in LIME

4 Explanations via Symbolic Knowledge Extraction
Discussion

5 Transparent Box Design via Symbolic Knowledge Injection
Focus on input knowledge
Focus on strategy
Example algorithms
Discussion

6 XAI in Practice
Python Tools for Feature Importance
From GitHub
From DockerHub
A Platform for Symbolic Knowledge Injection
From GitHub
From DockerHub
A Platform for Symbolic Knowledge Extraction
From GitHub
From DockerHub
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XAI in Practice A Platform for Symbolic Knowledge Extraction

Overall Design I
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XAI in Practice A Platform for Symbolic Knowledge Extraction

Overall Design II

Key components:

extractor: any entity capable of extracting symbolic knowledge out of
sub-symbolic predictors

possibly, in the form of logic knowledge bases
possibly, leveraging upon the dataset the predictor was
trained upon . . .

possibly, after a discretization step

. . . and its schema

predictor: some trained classifier/regressor from which knowledge
should be extracted

discretiser: any component capable to turn continuous datasets into
discrete form, following some strategy

logic theory: outcome of the extraction process
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XAI in Practice A Platform for Symbolic Knowledge Extraction

Overall Design III

Unified API for SKE
1 interface for Extractor, several implementations
e.g. CART, REAL, GridEx

1 interface for Discretiser, several implementations
1 interface for Predictor, several implementations
(scikit-learn method convention)
e.g. NN, kNN, DT
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XAI in Practice A Platform for Symbolic Knowledge Extraction

API Design I

Underlying ML libraryUnderlying Symbolic AI library

Psyke

PredictorDataFrame

Classifier Regressor

RuleTheory

Extractor
P : Predictor

predictor: P
discretization: Discretization

extract(DataFrame): Theory

Discretization

features: Collection<DiscreteFeature>

DiscreteFeature

name: String
admissibleValues: Map<String, Value>

Value
Interval

lower: Double
upper: Double

Constant

value: Any

*

wraps

1

1

1

N

1

N

wraps

1

1

input ofoutput of
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XAI in Practice A Platform for Symbolic Knowledge Extraction

API Design II

General assumptions:

underlying ML library (e.g. Scikit-Learn[Pedregosa et al., 2011]), providing:
DataFrame a container of tabular data

Predictor<R> a computational entity which can be trained (a.k.a.
fitted) against a DataFrame and used to draw
predictions of type R;

Classifier<R> a particular case of predictor where R represents a
type having a finite amount of admissible values;

Regressor<R> a particular case of predictor where R represents a
type having a potentially infinite (possibly continuous)
amount of admissible values.
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XAI in Practice A Platform for Symbolic Knowledge Extraction

API Design III

underlying symbolic AI library (e.g. 2P-Kt[Ciatto et al., 2021]), providing:
Rule a semantic, intelligible representation of the function

mapping Predictor’s inputs into the corresponding
outputs, for a particular portion of the input space;

Theory an ordered collection of rules.
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XAI in Practice A Platform for Symbolic Knowledge Extraction

About the Extracted Knowledge I

Knowledge extracted from classifiers

⟨task⟩(X1, . . . ,Xn, y1) :- p1,1(X̄ ), . . . , pn,1(X̄ ).
⟨task⟩(X1, . . . ,Xn, y2) :- p1,2(X̄ ), . . . , pn,2(X̄ ).

...
⟨task⟩(X1, . . . ,Xn, ym) :- p1,m(X̄ ), . . . , pn,m(X̄ ).
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XAI in Practice A Platform for Symbolic Knowledge Extraction

About the Extracted Knowledge II

Knowledge extracted from regressors

⟨task⟩(X1, . . . ,Xn,Y ) :- p1,1(X̄ ), . . . , pn,1(X̄ ),
Y is f1(X̄ ).

⟨task⟩(X1, . . . ,Xn,Y ) :- p1,2(X̄ ), . . . , pn,2(X̄ ),
Y is f2(X̄ ).

...
⟨task⟩(X1, . . . ,Xn,Y ) :- p1,m(X̄ ), . . . , pn,m(X̄ ),

Y is fm(X̄ ).
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XAI in Practice A Platform for Symbolic Knowledge Extraction

About the Extracted Knowledge III

. . . where:
task is the (n + 1)-ary relation representing the classification or
regression task at hand,

each Xi is a logic variable named after the i th input attribute of the
currently available data set,

X̄ is the n-nuple X1, . . . ,Xn,

each pi ,j is either a n-ary predicate expressing some constraint about
one, two or more variables, or the true literal—which can be omitted,

yi is the output of the i th prediction rule,

fj is an n-ary function computing the output value for the regression
task in the particular portion of the input space handled by the j th

rule, and

is/2 is the well-known Prolog predicate aimed at evaluating functions.
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XAI in Practice A Platform for Symbolic Knowledge Extraction

About the Extracted Knowledge IV

Underlying assumptions
1 the input space is partitioned into a finite set of regions
2 each region is assigned with a particular outcome, namely:

a class, for classification problems
a constant, or a simpler function, for regression problems

3 one rule generated describing for each region and its corresponding
outcome
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XAI in Practice A Platform for Symbolic Knowledge Extraction

Tutorial

Two ways to reproduce the tutorial:

GitHub Repository (long way)
https://github.com/pikalab-unibo/prima-tutorial-2022

DockerHub Images (quick way)
https://hub.docker.com/r/pikalab/prima-tutorial-2022/tags
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XAI in Practice From GitHub

Focus on. . .

1 AI, ML & XAI
2 XAI Background

Overview on XAI
XAI Nowadays
XAI for Supervised ML
Interpretation vs. Explanation

3 Explanations via Feature Importance
Feature Importance via LIME
Discussion about Feature Importance in LIME

4 Explanations via Symbolic Knowledge Extraction
Discussion

5 Transparent Box Design via Symbolic Knowledge Injection
Focus on input knowledge
Focus on strategy
Example algorithms
Discussion

6 XAI in Practice
Python Tools for Feature Importance
From GitHub
From DockerHub
A Platform for Symbolic Knowledge Injection
From GitHub
From DockerHub
A Platform for Symbolic Knowledge Extraction
From GitHub
From DockerHub
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XAI in Practice From GitHub

How to set the tutorial up from GitHub I

Enviromental pre-requisites
Python 3.9.x

JDK ≥ 11

Git

1 git clone
https://github.com/pikalab-unibo/prima-tutorial-2022

2 cd prima-tutorial-2022
3 pip install -r requirements.txt
4 jupyter notebook
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XAI in Practice From GitHub

How to set the tutorial up from GitHub II

5 Your browser should automatically open showing the following page:

6 open the psyke-tutorial.ipynb notebook
7 listen to the speaker presenting the tutorial =)
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XAI in Practice From DockerHub

Focus on. . .

1 AI, ML & XAI
2 XAI Background

Overview on XAI
XAI Nowadays
XAI for Supervised ML
Interpretation vs. Explanation

3 Explanations via Feature Importance
Feature Importance via LIME
Discussion about Feature Importance in LIME

4 Explanations via Symbolic Knowledge Extraction
Discussion

5 Transparent Box Design via Symbolic Knowledge Injection
Focus on input knowledge
Focus on strategy
Example algorithms
Discussion

6 XAI in Practice
Python Tools for Feature Importance
From GitHub
From DockerHub
A Platform for Symbolic Knowledge Injection
From GitHub
From DockerHub
A Platform for Symbolic Knowledge Extraction
From GitHub
From DockerHub
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XAI in Practice From DockerHub

How to set the tutorial up via Docker I

Enviromental pre-requisites
Docker

1

DOCKER_IMAGE=

{
pikalab/prima-tutorial-2022:latest on most computers
pikalab/prima-tutorial-2022:latest-apple-m1 on Apple M1 computers

2 docker pull $DOCKER_IMAGE
in case of lacking Internet access:

docker image load -i /path/to/local/image/file.tar

3 docker run -it –rm –name prima-tutorial-ske-ski -p
8888:8888 $DOCKER_IMAGE

4 Some textual output such as the following one should appear:
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XAI in Practice From DockerHub

How to set the tutorial up via Docker II

�
1 [I 09:51:46.940 NotebookApp] Writing notebook server cookie secret to /root/.local/

share/jupyter/runtime/notebook_cookie_secret
2 [I 09:51:47.159 NotebookApp] Serving notebooks from local directory: /notebook
3 [I 09:51:47.159 NotebookApp] Jupyter Notebook 6.5.2 is running at:
4 [I 09:51:47.159 NotebookApp] http :// cb0a3641caf0 :8888/? token =2

b02d31671c6ad9e9cf8e036eb6962d3592af9cfdd5e60bd
5 [I 09:51:47.159 NotebookApp] or http ://127.0.0.1:8888/? token=2

b02d31671c6ad9e9cf8e036eb6962d3592af9cfdd5e60bd
6 [I 09:51:47.160 NotebookApp] Use Control -C to stop this server and shut down all

kernels (twice to skip confirmation).
7 [C 09:51:47.162 NotebookApp]
8
9 To access the notebook , open this file in a browser:

10 file :/// root/.local/share/jupyter/runtime/nbserver -7-open.html
11 Or copy and paste one of these URLs:
12 http :// cb0a3641caf0 :8888/? token=2

b02d31671c6ad9e9cf8e036eb6962d3592af9cfdd5e60bd
13 or http ://127.0.0.1:8888/? token =2 b02d31671c6ad9e9cf8e036eb6962d3592af9cfdd5e60bd
� �
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XAI in Practice From DockerHub

How to set the tutorial up via Docker III

5 Copy-paste into your browser any link of the form:

http://cb0a3641caf0:8888/?token=TOKEN
6 Your browser should now be showing the following page:

7 open the psyke-tutorial.ipynb notebook
8 listen to the speaker presenting the tutorial =)
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