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Introduction



The data growth

It has been reported that 2.5 quintillion bytes of data is being
created everyday
The 90% of stored data in the world, has been generated in the past
two years only 1

1Forbes: How Much Data Do We Create Every Day? May 21, 2018
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https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/##2ea328f160ba


The sexiest job of the 21st century

The Data scientist has become one of the most sought figure
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The role of Machine Learning in Data Science

Data scientists use the Machine Learning toolbox to solve real-cases
problems
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The need

Data Scientists do not scale: 2

• the increasingly growing size of data overcomes their availability
• the numerous skills expected (IT, mathematics, statistics,
business, cooperation) make it difficult to increase their number

More and more non-experts use data mining tools

Off the shelf solutions are required to assist them
2Harvard Business Review: Data Scientists Don’t Scale, May 22, 2015
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AutoML definition

Automated Machine Learning is the process of automating the
process of applying Machine Learning

Data scientists can spend
less tedious time on
finding parameters/hyper-
parameters, and focus on
the analysis
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AutoML outcome

AutoML aims to find a ML pipeline
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AutoML outcome

AutoML smartly explores huge search spaces.

• A data pipeline consists of a sequence of transformations
• Each transformation can be instantiated from a pool of
operators

• Each operator has several parameters
• Each parameter has its own search space
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AutoML outcome

AutoML smartly explores huge search spaces.

• The modeling phase involves the instantiation of a algorithm
from a specific

• Each algorithm has several hyper-parameters
• Each hyper-parameter has its own search space
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Building blocks



Auto-WEKA: the CASH problem

Auto-Weka introduces the Combined Algorithm Selection and
Hyper-parameter optimization problem (CASH) 3

DecisioneTree.num_obj = [2, 3]
DecisioneTree.pruning = [True, False]
KNN.k = [3, 4]
KNN.distance_measure = [1 / distance,

1 - distance]

3Thornton, Chris, et al. ”Auto-WEKA: Combined selection and hyperparameter
optimization of classification algorithms.” Proceedings of the 19th ACM SIGKDD
international conference on Knowledge discovery and data mining. 2013.
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Auto-WEKA: the CASH problem

Given

• a data-set D divided into Dtrain,Dvalidation according to
k cross-validation

• Dtrain = {D1train, . . . ,Ditrain, . . . ,Dktrain}
• Dvalidation = {D1validation, . . . ,Divalidation, . . . ,Dkvalidation}
• Ditrain = D\Divalidation
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Given

• a data-set D divided into Dtrain,Dvalidation according to
k cross-validation

• Dtrain = {D1train, . . . ,Ditrain, . . . ,Dktrain}
• Dvalidation = {D1validation, . . . ,Divalidation, . . . ,Dkvalidation}
• Ditrain = D\Divalidation

• a set of algorithms A = {A1, . . . , Aj, . . . , An} with associated
hyper-parameter spaces {Θ1, . . . ,Θj, . . . ,Θn}

For instance:
A1 = DecisionTree
Θ1 = {

num_obj = [2, 3],
pruning = [True, False]

}

A2 = KNN
Θ2 = {

k = [3, 4],
distance_measure = [1 / distance, 1 - distance]

}
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Auto-WEKA: the CASH problem

Given

• a data-set D divided into Dtrain,Dvalidation according to
k cross-validation

• Dtrain = {D1train, . . . ,Ditrain, . . . ,Dktrain}
• Dvalidation = {D1validation, . . . ,Divalidation, . . . ,Dkvalidation}
• Ditrain = D\Divalidation

• a set of algorithms A = {A1, . . . , Aj, . . . , An} with associated
hyper-parameter spaces {Θ1, . . . ,Θj, . . . ,Θn}

• an evaluation metricM(Ajθ,Ditrain,Divalidation)

For instance:

• Accuracy
• Precision
• Recall
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Auto-WEKA: the CASH problem

Given

• a data-set D divided into Dtrain,Dvalidation according to
k cross-validation

• Dtrain = {D1train, . . . ,Ditrain, . . . ,Dktrain}
• Dvalidation = {D1validation, . . . ,Divalidation, . . . ,Dkvalidation}
• Ditrain = D\Divalidation

• a set of algorithms A = {A1, . . . , An} with associated
hyper-parameter spaces Θ1, . . . ,Θn

• an evaluation metricM(Aj,Ditrain,Divalidation)

We are searching for

A∗θ∗ϵ argmax
AjϵA,θϵΘj

1
k

k∑
i=1

M(Ajθ,D
i
train,Divalidation) (CASH)
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Auto-Weka: CASH reformulation

1 2 3 4 5 6 7 8

0.5

1

Θ

M

θ Algorithm num_obj pruning k distance_measure
1 DecisionTree 2 True
2 DecisionTree 2 False
3 DecisionTree 3 True
4 DecisionTree 3 False
5 KNN 3 1/distance
6 KNN 3 1-distance
7 KNN 4 1/distance
8 KNN 4 1-distance

AutoML • A state-of-the-art overview 16



Auto-Weka: search space

The table represents the considered classifiers in
Auto-WEKA. Categorical and Numeric refer to the
number of hyper-parameters of each kind for
each classifier.

Explore all the configurations is
unfeasible (786 hyper-parameters)
⇒ explore few of them but in a smart way
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CASH resolution approches4

• Model free methods
• Grid search
• Random search
• Heuristics

• Ant colony optimization
• Particle Swarm Optimization
• Simulate Annealing

• Genetic algorithms
• Multi-resolution optimization

• Successive Halving
• Hyper-Band

• Bayesian optimization

4Elshawi, R., Maher, M., Sakr, S. (2019). Automated machine learning: State-of-the-art
and open challenges.
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Bayesian Optimization

Explore all the configurations is unfeasible
⇒ explore few of them but in a smart way

We want to:

•• divide the exploration in iterations
• keep track of past evaluation scores
• build/update a probabilistic model
• find promising configurations to explore
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Bayesian Optimization5

• objective function: the function we
want to maximize

• observed data: the tested
hyper-parameters configurations

The probabilistic model consists of:
• predicted function, an estimation of
the objective

• confidence interval, which indicates
the possible variance

The acquisition functions suggests the
next configuration to visit. It regulates:
• explotation

• exploration
5Brochu, Eric, Vlad M. Cora, and Nando De Freitas. ”A tutorial on Bayesian optimization of
expensive cost functions, with application to active user modeling and hierarchical reinforcement
learning.” (2010).
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Bayesian Optimization: working example
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Bayesian Optimization: SMBO

Sequential Model-Based Optimization (SMBO) is a formalization of
Bayesian Optimization:

1. Evaluate some random hyper-parameters configurations
2. Build a probabilistic model
3. Exploit the model and the acquisition function to find the next
hyper-parameters configuration to evaluate

4. Evaluate the hyper-parameters configuration
5. Update the probabilistic model incorporating the new results
6. Repeat steps 3–5 until the budget exceeded
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Bayesian Optimization: probabilistic models

The implementations of SMBO differ in how they construct the
probabilistic model

• using Gaussian Process (GP)
• using Tree Parzen Estimators (TPE)
• using Random Forest (SMAC)6

6F. Hutter, H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for
general algorithm configuration. Proc. of LION-5, pages 507–523, 2011.
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Bayesian Optimization: SMAC

Random Forest is not usually treated as probabilistic models.
SMAC obtains:

• the predicted function, as the mean over the predictions of its
individual trees for θ

• the confidence interval, as the variance over the predictions of
its individual trees for θ
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Bayesian Optimization: acquisition functions

The acquisition function is the criteria by which the next set of
hyper-parameters are chosen from the surrogate function
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Bayesian Optimization: Sum up

Pros:

• converge with a low budget
• provide fine-grained information

Cons:

• slow to start for large hyper-parameter spaces
⇒ a.k.a cold-start problem

•• there is no optimization to reduce the evaluation costs
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State of the art



AutoML tools

There are three main kinds of framework:

• Cloud-Based
• Google AutoML
• Amazon AutoML
• Azure AutoML
• Data Iku
• Data Robot

• Distributed
• MLBase
• TrasmogrifAI
• MLBox
• ATM
• Rafiki

• Centralised
• Auto-Weka
• Auto-MEKA
• Auto-Sklearn
• HyperOpt
• HyperOpt-Sklearn
• TPOT
• SmartML
• H2O
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Auto-Sklearn 7

Architecture:

• Meta-learning
• Optimization

• Scikit-learn as ML framework
• SMAC as Bayesian optimizer

• Enseambling

7Feurer, Matthias, et al. ”Auto-sklearn: efficient and robust automated machine
learning.” Automated Machine Learning. Springer, Cham, 2019. 113-134.
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Auto-Sklearn: Optimization
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Auto-Sklearn: Meta-learning
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Getting insight with meta-learning
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Getting insight with meta-learning

Percentage of use of transformations’ operators:
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Getting insight with meta-learning

Conditional Inference Tree built for Features Engineering:
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Getting insight with meta-learning

Conditional Inference Tree built for Rebalancing:
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Meta-learning as a warm-starting procedure

Pros:

• converge with a low budget
• provide fine-grained information

Cons:

• slow to start for large hyper-parameter spaces
• there is no optimization to reduce the evaluation costs
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Meta-learning as a warm-starting procedure

Pros:

• converge with a low budget
• provide fine-grained information

Cons:

• slow to start for large hyper-parameter spaces
⇒ a.k.a cold-start problem

•• there is no optimization to reduce the evaluation costs
⇒ multi-fidelity optimization
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Multi-fidelity optimization

Pros:

•• Evaluate configurations incrementally (e.g., folds by folds)
• Discard non-performing configurations

Cons:

• Model-free approaches

Main methods:

1. Successive halving
2. Hyper Band
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Successive halving

Given:

• N different configurations • a precise budget β

The evaluation starts for all the N configurations concurrently

At each cut just the best halve of the configurations are kept
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Hyper Band

Successive Halving issues:

• How we decide N number of
configurations?

• How we decide the number of
cuts?

Hyper Band performs frequently Successive Halving varying:

• the number of tested configurations • the budget
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Bayesian Optimization Hyper Band (BOHB)

Bayesian Optimization: • Model-based • really slow
Hyper Band: • Model-free • really fast

BOHB makes the most out of Bayesian Optimization and Hyper Band:

• Bayesian Optimization to not
go blindly

• Hyper Band to evaluate N
iterations concurrently
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Human-centered AutoML



AutoML

AutoML aims at find the best ML pipeline

• At each step, a technique must be selected
• For each technique, a set of hyper-parameters must be set
• Each hyper-parameter has its own search space
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CRISP-DM: Cross Industry Standard Process for Data Mining

CRISP-DM enables the exploration

• domain-related;

• transformation-related;

• cross-cutting (e.g., ethical, legal).

of ML Constraints:

• data-related;

• algorithm-related;
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AutoML

AutoML aims at automating the ML pipeline instantiation:

• it is difficult to consider all the constraints together;

• it is not transparent;

• it doesn’t allow a proper knowledge augmentation.
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HAMLET: Human-centric AutoML via Logic and Argumentation

HAMLET leverages :

• Logic to give a structure to the knowledge;

• Argumentation to deal with inconsistencies,
and revise the results.
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Questions?
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