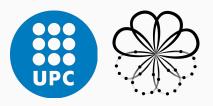
AutoML

A state-of-the-art overview

Joseph Giovanelli j.giovanelli@unibo.it

Alma Mater Studiorum • University of Bologna BIG • Business Intelligence Group

Whoami



Ph.D. Candidate

in Computer Science and Engineering Main research field: **AutoML**

UPC - Barcelona

Meta-learning, Data Pre-processing

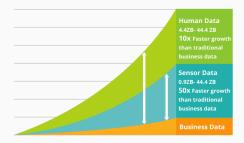
LUH|AI - AutoML Hannover Multi-objective, Preference Learning

Research & Development projects on BI, Big Data, Data Mining

- 1. Introduction
- 2. Building blocks
- 3. State of the art
- 4. Human-centered AutoML

Introduction

It has been reported that 2.5 quintillion bytes of data is being created everyday The 90% of stored data in the world, has been generated in the past two years only ¹



¹Forbes: How Much Data Do We Create Every Day? May 21, 2018

The sexiest job of the 21st century

The Data scientist has become one of the most sought figure

The role of Machine Learning in Data Science

Data scientists use the Machine Learning toolbox to solve real-cases problems

The need

Data Scientists do not scale: ²

- the increasingly growing size of data overcomes their availability
- the **numerous skills expected** (IT, mathematics, statistics, business, cooperation) make it difficult to increase their number

More and more non-experts use data mining tools

Off the shelf solutions are required to assist them

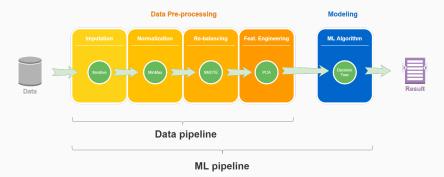
²Harvard Business Review: Data Scientists Don't Scale, May 22, 2015

Automated Machine Learning is the process of automating the process of applying Machine Learning

Data scientists can spend less tedious time on finding parameters/hyperparameters, and focus on the analysis

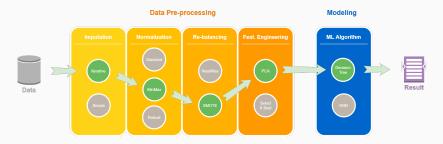
AutoML outcome

AutoML aims to find a ML pipeline



AutoML outcome

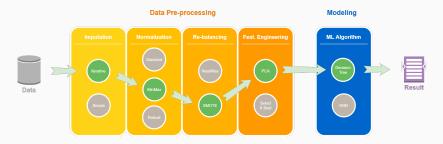
AutoML smartly explores huge search spaces.



- A data pipeline consists of a sequence of transformations
- Each transformation can be instantiated from a pool of operators
- Each operator has several parameters
- Each parameter has its own search space

AutoML outcome

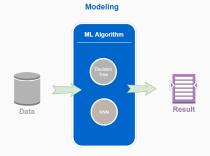
AutoML smartly explores huge search spaces.



- The modeling phase involves the instantiation of a **algorithm** from a specific
- Each algorithm has several hyper-parameters
- Each hyper-parameter has its own search space

Building blocks

Auto-Weka introduces the Combined Algorithm Selection and Hyper-parameter optimization problem (CASH) ³



DecisioneTree.num_obj = [2, 3] DecisioneTree.pruning = [True, False] KNN.k = [3, 4] KNN.distance_measure = [1 / distance, 1 - distance]

³Thornton, Chris, et al. "Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms." Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining. 2013.

Auto-WEKA: the CASH problem

Given

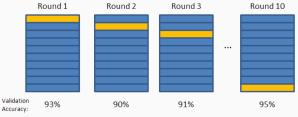
 a data-set D divided into D_{train}, D_{validation} according to k cross-validation

•
$$D_{train} = \{D_{train}^1, \dots, D_{train}^i, \dots, D_{train}^k\}$$

• $D_{validation} = \{D_{validation}^{1}, \dots, D_{validation}^{i}, \dots, D_{validation}^{k}\}$

•
$$D_{train}^{i} = D \setminus D_{validation}^{i}$$

Validation Set Training Set



Final Accuracy = Average(Round 1, Round 2, ...)

Given

• a **data-set** D divided into D_{train}, D_{validation} according to k cross-validation

•
$$D_{train} = \{D_{train}^1, \dots, D_{train}^i, \dots, D_{train}^k\}$$

- $D_{validation} = \{D_{validation}^1, \dots, D_{validation}^i, \dots, D_{validation}^k\}$
- $D_{train}^{i} = D \setminus D_{validation}^{i}$
- a set of algorithms $\mathcal{A} = \{A^1, \dots, A^j, \dots, A^n\}$ with associated hyper-parameter spaces $\{\Theta^1, \dots, \Theta^j, \dots, \Theta^n\}$

For instance: $A^1 = DecisionTree$ $A^2 = KNN$ $\Theta^1 = \{$ $\Theta^2 = \{$ $num_obj = [2, 3],$ k = [3, 4],pruning = [True, False] $distance_measure = [1 / distance, 1 - distance]$ $\}$ $\}$

Given

- a **data-set** D divided into D_{train}, D_{validation} according to k cross-validation
 - $D_{train} = \{D_{train}^1, \dots, D_{train}^i, \dots, D_{train}^k\}$
 - $D_{validation} = \{D_{validation}^1, \dots, D_{validation}^i, \dots, D_{validation}^k\}$
 - $D_{train}^{i} = D \setminus D_{validation}^{i}$
- a set of algorithms $A = \{A^1, \dots, A^j, \dots, A^n\}$ with associated hyper-parameter spaces $\{\Theta^1, \dots, \Theta^j, \dots, \Theta^n\}$
- an evaluation metric $\mathcal{M}(A_{\theta}^{j}, D_{train}^{i}, D_{validation}^{i})$

For instance:

- Accuracy
- Precision
- Recall

Given

• a **data-set** D divided into D_{train}, D_{validation} according to k cross-validation

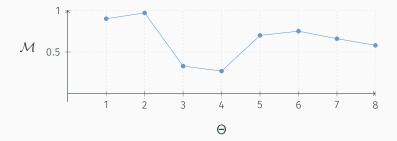
•
$$D_{train} = \{D_{train}^1, \dots, D_{train}^i, \dots, D_{train}^k\}$$

- $D_{validation} = \{D_{validation}^{1}, \dots, D_{validation}^{i}, \dots, D_{validation}^{k}\}$
- $D_{train}^{i} = D \setminus D_{validation}^{i}$
- a set of algorithms $A = \{A^1, \dots, A^n\}$ with associated hyper-parameter spaces $\Theta^1, \dots, \Theta^n$
- an evaluation metric $\mathcal{M}(A^{j}, D^{i}_{train}, D^{i}_{validation})$

We are searching for

$$A_{\theta^*}^* \epsilon \underset{A^{j} \epsilon \mathcal{A}, \theta \epsilon \Theta^{j}}{\arg \max} \frac{1}{k} \sum_{i=1}^{k} \mathcal{M}(A_{\theta}^{j}, D_{train}^{i}, D_{validation}^{i})$$
(CASH)

Auto-Weka: CASH reformulation



θ	Algorithm	num_obj	pruning	k	distance_measure
1	DecisionTree	2	True		
2	DecisionTree	2	False		
3	DecisionTree	3	True		
4	DecisionTree	3	False		
5	KNN			3	1/distance
6	KNN			3	1-distance
7	KNN			4	1/distance
8	KNN			4	1-distance

Auto-Weka: search space

Classifier	Categorical	Numeric
BAYES NET	2	0
NAIVE BAYES	2	0
NAIVE BAYES MULTINOMIAL	0	0
GAUSSIAN PROCESS	3	6
LINEAR RECRESSION	2	1
LOGISTIC RECRESSION	0	1
SINGLE-LAYER PERCEPTRON	5	2
STOCHASTIC GRADIENT DESCENT	3	2
SVM	4	6
SIMPLE LINEAR REGRESSION	0	0
SIMPLE LOGISTIC REGRESSION	2	1
VOTED PERCEPTRON	1	2
KNN	4	1
K-STAR	2	1
DECISION TABLE	4	0
RIPPER	3	1
M5 RULES	3	1
1-B	ö	- i -
PART	2	2
0-B	ō	õ
DECISION STUMP	ő	ő
C4.5 DECISION TREE	6	2
LOGISTIC MODEL TREE	5	2
M5 TREE	3	1
RANDOM FOREST	2	3
RANDOM TREE	4	4
REP TREE	2	3
LOCALLY WRIGHTED LEARNING*	3	0
AdaBoost M1"	2	2
ADDITIVE RECRESSION"	ĺ.	2
AUDITIVE RECRESSION ATTRIBUTE SELECTED [*]	2	ő
BAGGING*	í	2
DAUGING CLASSIFICATION VIA REGRESSION*	0	0
LOGITBOOST*	4	4
LOGITBOOST MULTICLASS CLASSIFIER [*]	4	4
BANDOM COMMITTRE [*]	0	1
RANDOM COMMITTRE BANDOM SUBSPACE [*]		
RANDOM SUBSPACE"	0	2
Voting ⁺	1	0
STACKING ⁺	0	0

The table represents the considered classifiers in Auto-WEKA. Categorical and Numeric refer to the number of hyper-parameters of each kind for each classifier.

Explore all the configurations is unfeasible (786 hyper-parameters) ⇒ explore few of them but in a smart way

CASH resolution approches⁴

- Model free methods
 - Grid search
 - Random search
 - Heuristics
 - · Ant colony optimization
 - Particle Swarm Optimization
 - Simulate Annealing
 - Genetic algorithms
 - Multi-resolution optimization
 - Successive Halving
 - Hyper-Band
- Bayesian optimization

⁴Elshawi, R., Maher, M., Sakr, S. (2019). Automated machine learning: State-of-the-art and open challenges.

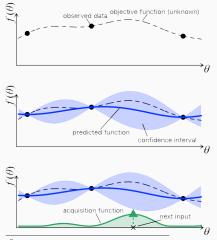
Explore all the configurations is unfeasible

 \Rightarrow explore few of them but in a smart way

We want to:

- divide the exploration in iterations
- keep track of past evaluation scores
- build/update a **probabilistic model**
- find promising configurations to explore

Bayesian Optimization⁵



- **objective function**: the function we want to maximize
- observed data: the tested hyper-parameters configurations

The probabilistic model consists of:

- predicted function, an estimation of the objective
- **confidence interval**, which indicates the possible variance

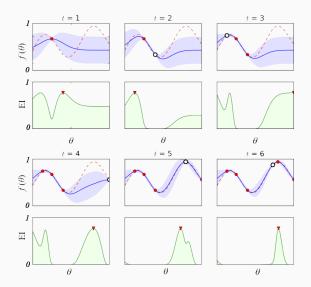
The acquisition functions suggests the next configuration to visit. It regulates:

- \cdot explotation
- exploration

⁵Brochu, Eric, Vlad M. Cora, and Nando De Freitas. "A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning." (2010).

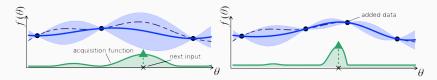
AutoML · A state-of-the-art overview

Bayesian Optimization: working example



Sequential Model-Based Optimization (SMBO) is a formalization of Bayesian Optimization:

- 1. Evaluate some random hyper-parameters configurations
- 2. Build a probabilistic model
- 3. Exploit the model and the acquisition function to find the next hyper-parameters configuration to evaluate
- 4. Evaluate the hyper-parameters configuration
- 5. Update the probabilistic model incorporating the new results
- 6. Repeat steps 3–5 until the budget exceeded



The **implementations of SMBO** differ in how they construct the **probabilistic model**

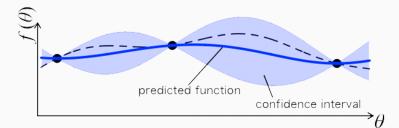
- using Gaussian Process (GP)
- using Tree Parzen Estimators (TPE)
- using Random Forest (SMAC)⁶

⁶F. Hutter, H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for general algorithm configuration. Proc. of LION-5, pages 507–523, 2011.

Bayesian Optimization: SMAC

Random Forest is not usually treated as probabilistic models. SMAC obtains:

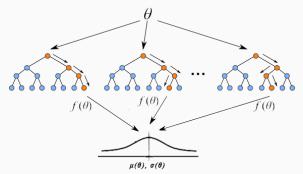
- the predicted function, as the mean over the predictions of its individual trees for θ
- the confidence interval, as the variance over the predictions of its individual trees for θ



Bayesian Optimization: SMAC

Random Forest is not usually treated as probabilistic models. SMAC obtains:

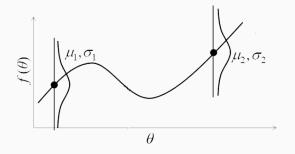
- the predicted function, as the mean over the predictions of its individual trees for θ
- the confidence interval, as the variance over the predictions of its individual trees for θ



Bayesian Optimization: SMAC

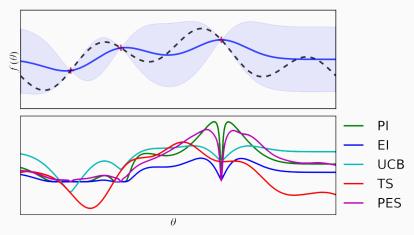
Random Forest is not usually treated as probabilistic models. SMAC obtains:

- the predicted function, as the mean over the predictions of its individual trees for θ
- the confidence interval, as the variance over the predictions of its individual trees for θ



Bayesian Optimization: acquisition functions

The acquisition function is the criteria by which the next set of hyper-parameters are chosen from the surrogate function



Pros:

- $\cdot\,$ converge with a low budget
- provide fine-grained information

Cons:

- slow to start for large hyper-parameter spaces
 ⇒ a.k.a cold-start problem
- there is no optimization to reduce the evaluation costs

State of the art

There are three main kinds of framework:

- Cloud-Based
 - Google AutoML
 - Amazon AutoML
 - Azure AutoML
 - Data Iku
 - Data Robot
- Distributed
 - MLBase
 - TrasmogrifAl
 - MLBox
 - ATM
 - Rafiki

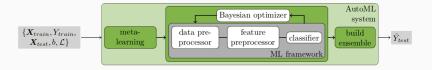
Centralised

- Auto-Weka
- Auto-MEKA
- Auto-Sklearn
- HyperOpt
- HyperOpt-Sklearn
- TPOT
- SmartML
- H2O

Auto-Sklearn⁷

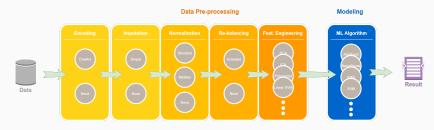
Architecture:

- Meta-learning
- Optimization
 - Scikit-learn as ML framework
 - SMAC as Bayesian optimizer
- Enseambling



⁷Feurer, Matthias, et al. "Auto-sklearn: efficient and robust automated machine learning." Automated Machine Learning. Springer, Cham, 2019. 113-134.

Auto-Sklearn: Optimization



name	$#\lambda$	cat (cond)	cont (cond)
AdaBoost (AB)	4	1 (-)	3 (-)
Bernoulli naïve Bayes	2	1 (-)	1 (-)
decision tree (DT)	4	1 (-)	3 (-)
extreml. rand. trees	5	2 (-)	3 (-)
Gaussian naïve Bayes	-		-
gradient boosting (GB)	6		6 (-)
kNN	3	2 (-)	1 (-)
LDA	4	1 (-)	3(1)
linear SVM	4	2 (-)	2 (-)
kernel SVM	7	2 (-)	5(2)
multinomial naïve Bayes	2	1 (-)	1 (-)
passive aggressive	3	1 (-)	2 (-)
QDA	2		2 (-)
random forest (RF)	5	2 (-)	3 (-)
Linear Class. (SGD)	10	4 (-)	6 (3)

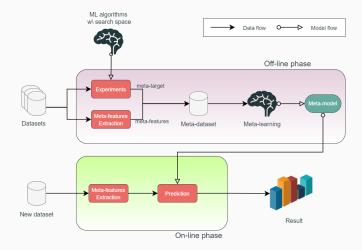
(a) classification algorithms

name	$#\lambda$	cat (cond)	cont (cond)
extrem1. rand. trees prep	r. 5	2 (-)	3 (-)
fast ICA	4	3 (-)	1(1)
feature agglomeration	4	3.()	1 (-)
kernel PCA	5	1 (-)	4 (3)
rand. kitchen sinks	2	-	2 (-)
linear SVM prepr.	3	1 (-)	2 (-)
no preprocessing	-	-	-
nystroem sampler	5	1 (-)	4 (3)
PCA	2	1 (-)	1 (-)
polynomial	3	2 (-)	1 (-)
random trees embed.	4	-	4 (-)
select percentile	2	1 (-)	1 (-)
select rates	3	2 (-)	1(-)
one-hot encoding	2	1 (-)	1(1)
imputation	1	1 (-)	
balancing	1	1 (-)	
rescaling	1	1 (-)	

(b) preprocessing methods

AutoML · A state-of-the-art overview

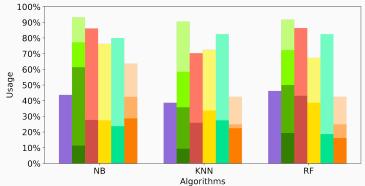
Auto-Sklearn: Meta-learning



lD	Pipeline prototype	ID	Pipeline prototype
1	$I \rightarrow E \rightarrow N \rightarrow D \rightarrow F \rightarrow R$	13	$I \rightarrow E \rightarrow F \rightarrow N \rightarrow D \rightarrow R$
2	$I \rightarrow E \rightarrow N \rightarrow D \rightarrow R \rightarrow F$	14	$I \rightarrow E \rightarrow F \rightarrow N \rightarrow R \rightarrow D$
3	$I \rightarrow E \rightarrow N \rightarrow F \rightarrow D \rightarrow R$	15	$I \rightarrow E \rightarrow F \rightarrow D \rightarrow N \rightarrow R$
4	$I \rightarrow E \rightarrow N \rightarrow F \rightarrow R \rightarrow D$	16	$I \rightarrow E \rightarrow F \rightarrow D \rightarrow R \rightarrow N$
5	$I \rightarrow E \rightarrow N \rightarrow R \rightarrow D \rightarrow F$	17	$I \to E \to F \to R \to N \to D$
6	$I \rightarrow E \rightarrow N \rightarrow R \rightarrow F \rightarrow D$	18	$I \rightarrow E \rightarrow F \rightarrow R \rightarrow D \rightarrow N$
7	$I \rightarrow E \rightarrow D \rightarrow N \rightarrow F \rightarrow R$	19	$I \to E \to R \to N \to D \to F$
8	$I \rightarrow E \rightarrow D \rightarrow N \rightarrow R \rightarrow F$	20	$I \to E \to R \to N \to F \to D$
9	$I \rightarrow E \rightarrow D \rightarrow F \rightarrow N \rightarrow R$	21	$I \rightarrow E \rightarrow R \rightarrow D \rightarrow N \rightarrow F$
10	$I \rightarrow E \rightarrow D \rightarrow F \rightarrow R \rightarrow N$	23	$I \rightarrow E \rightarrow R \rightarrow D \rightarrow F \rightarrow N$
11	$I \rightarrow E \rightarrow D \rightarrow R \rightarrow N \rightarrow F$	2.3	$I \rightarrow E \rightarrow R \rightarrow F \rightarrow N \rightarrow D$
12	$I \rightarrow E \rightarrow D \rightarrow R \rightarrow F \rightarrow N$	24	$I \rightarrow E \rightarrow R \rightarrow F \rightarrow D \rightarrow N$

Getting insight with meta-learning

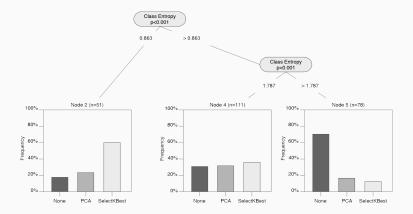
Percentage of use of transformations' operators:



AutoML · A state-of-the-art overview

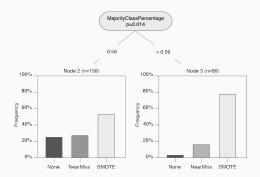
Getting insight with meta-learning

Conditional Inference Tree built for Features Engineering:



Getting insight with meta-learning

Conditional Inference Tree built for Rebalancing:



- converge with a low budget
- provide fine-grained information

Cons:

- slow to start for large hyper-parameter spaces
- \cdot there is no optimization to reduce the **evaluation costs**

- $\cdot\,$ converge with a low budget
- provide fine-grained information

Cons:

- slow to start for large hyper-parameter spaces
 ⇒ a.k.a cold-start problem
- \cdot there is no optimization to reduce the **evaluation costs**

- $\cdot\,$ converge with a low budget
- provide fine-grained information

Cons:

- slow to start for large hyper-parameter spaces
 - \Rightarrow a.k.a cold-start problem
- $\boldsymbol{\cdot}$ there is no optimization to reduce the **evaluation costs**
 - \Rightarrow multi-fidelity optimization

- Evaluate configurations incrementally (e.g., folds by folds)
- Discard non-performing configurations

Cons:

Model-free approaches

Main methods:

- 1. Successive halving
- 2. Hyper Band

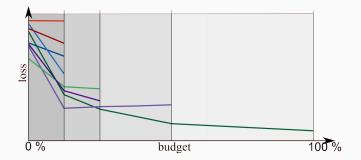
AutoML · A state-of-the-art overview

Successive halving

Given:

• *N* different configurations • a precise budget β

The evaluation starts for all the N configurations concurrently

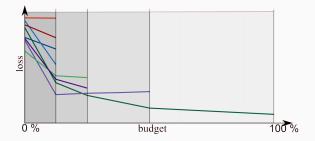


At each cut just the best halve of the configurations are kept

Hyper Band

Successive Halving issues:

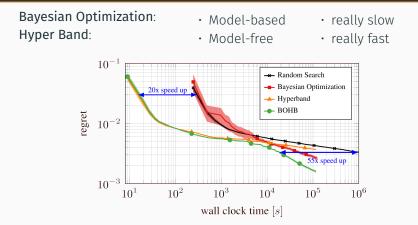
- How we decide *N* number of configurations?
- How we decide the **number of** cuts?



Hyper Band performs frequently Successive Halving varying:

• the number of tested configurations • the budget

Bayesian Optimization Hyper Band (BOHB)

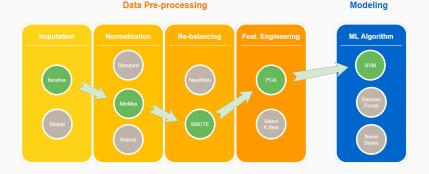


BOHB makes the most out of Bayesian Optimization and Hyper Band:

- Bayesian Optimization to not Hyper Band to evaluate N go blindly
 - iterations concurrently

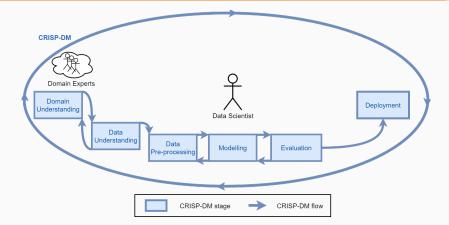
Human-centered AutoML

AutoML aims at find the best ML pipeline

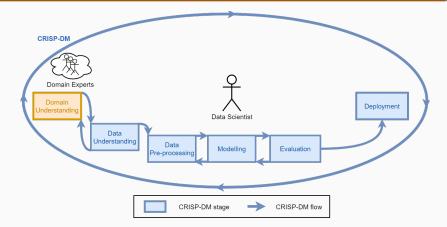


- At each step, a technique must be selected
- For each technique, a set of hyper-parameters must be set
- Each hyper-parameter has its own search space

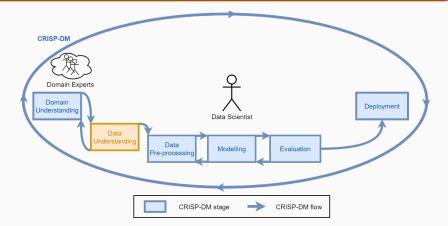
AutoML · A state-of-the-art overview



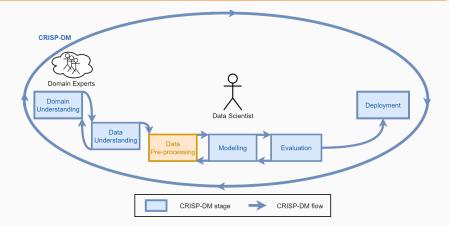
- domain-related;
- transformation-related;
- AutoML · A state-of-the-art Gross-cutting (e.g., ethical, legal).
- data-related;
- · algorithm-related;



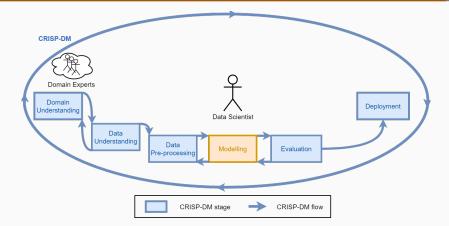
- domain-related;
- transformation-related;
- AutoML · A state-of-the-art Gross-cutting (e.g., ethical, legal).
- data-related;
- · algorithm-related;



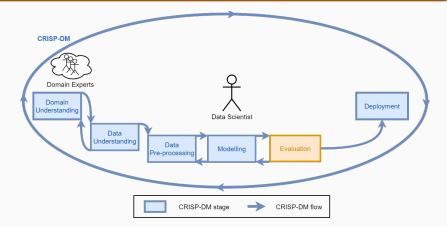
- domain-related;
- transformation-related;
- AutoML · A state-of-the-art Gross-cutting (e.g., ethical, legal).
- data-related;
- · algorithm-related;



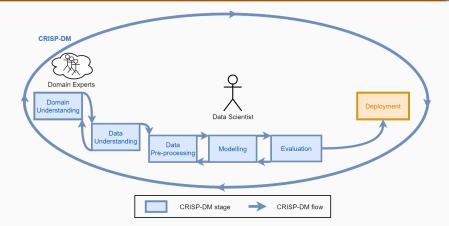
- domain-related;
- transformation-related;
- AutoML · A state-of-the-art Cross-cutting (e.g., ethical, legal).
- data-related;
- · algorithm-related;



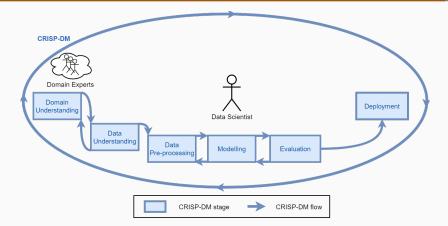
- domain-related;
- transformation-related;
- AutoML · A state-of-the-art Gross-cutting (e.g., ethical, legal).
- data-related;
- algorithm-related;



- domain-related;
- transformation-related;
- AutoML · A state-of-the-art Gross-cutting (e.g., ethical, legal).
- data-related;
- algorithm-related;

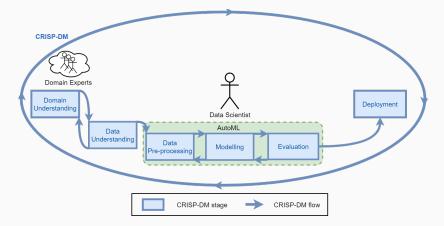


- domain-related;
- transformation-related;
- AutoML · A state-of-the-art Gross-cutting (e.g., ethical, legal).
- data-related;
- algorithm-related;



- domain-related;
- transformation-related;
- AutoML · A state-of-the-art cross-cutting (e.g., ethical, legal).
- data-related;
- · algorithm-related;

AutoML

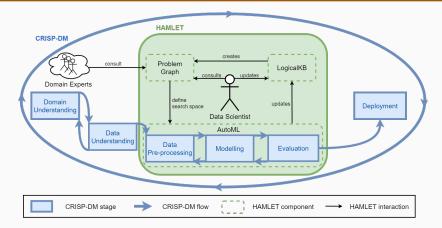


AutoML aims at automating the ML pipeline instantiation:

- · it is difficult to consider all the constraints together;
- · it is not transparent;

it doesn't allow a proper knowledge augmentation.
 AutoML · A state-of-the-art overview

HAMLET: Human-centric AutoML via Logic and Argumentation



HAMLET leverages :

- · Logic to give a structure to the knowledge;
- Argumentation to deal with inconsistencies, and revise the results.

AutoML · A state-of-the-art overview

Questions?