
Deep Learning

1

Outline 2

 Introduction

 Artificial neural networks

 Backpropagation

 Convolutional neural networks (CNN)

 Recurrent neural networks (RNN)

 Autoencoders (AE)

 Generative adversarial networks (GAN)

 Deep Q-network

Introduction

3

”

“Deep Learning (DL) is a ML technique
that constructs artificial neural
networks to mimic the structure and
function of the human brain.

4

From DeepAI

https://deepai.org/machine-learning-glossary-and-terms/deep-learning

Deep learning 5

 In traditional ML techniques, raw data are analyzed by a domain expert to identify robust
features to reduce the complexity and make patterns more visible to learning algorithms.

 DL uses a large number of hidden layers to extract features from raw data and transform
them into different levels of abstraction (representations).

Deep learning (2) 6

 Since 2012, DL techniques have overcome traditional ML techniques in many application
areas:

• Object detection and localization (e.g., Yolo)

• Face Recognition, Pedestrian Detection, Traffic Sign Detection

• Autonomous Car (e.g., PilotNet) and Drones (e.g., TrailNet)

• Speech Recognition, Language Translation

• Natural Language Processing

• Recommendation systems

• Arts (e.g., Deep Dream, Style Transfer)

Deep learning (3) 7

• Image Generation (Stable Diffusion)

• Medical Image analysis (e.g., CheXnet)

• Protein folding (Alpha fold)

• Brain implants (e.g., Neuralink)

What is changed? Why now? 8

 Many of the core concepts of DL were well known from the end of the last century.

 Why did not DL approaches replace traditional ML techniques for more than ten years?

 What happened that changed things?

 Though there are many factors, the two most crucial components appear to be:

• appearance of large, high-quality labeled datasets;

• massively parallel computing with GPUs.

Why does DL require large amount of data? 9

 Because DL models contains millions (or even billion) of trainable parameters and they
need to see a proportional amount of examples to get good performance.

DL model categories 10

Deep neural
networks

Fully

Connected

Multi-Layer
Perceptron

Convolutional

LeNet-5

AlexNet

VGGNet

GoogLeNet

ResNet

Recurrent

Base

LSTM

GRU

Bidirectional

Autoencoders

Undercomplete

Denoising

Variational

Conditional
Variational

Transformers
Generative
Adversarial
Networks

Base

Deep
Convolutional

Pix2Pix

CycleGAN

Deep

Q-Learning

Deep

Q-Network

DL application areas 11

Natural
language

processing

Virtual
assistants

Visual
recognition

Fraud
detection

Healthcare

Handwriting
generation

Personalization Machine
translation

Self driving
car

DL application areas (2) 12

Image –
language

translation

Pixel
restoration

Image
captioning

Demographic
predictions

Predicting
natural

disasters

News
analysis

Image
colorization

Game
playing

Artificial neural networks

13

”

“Artificial neural networks paradigm is inspired by
the way the biological nervous system processes
information. It is composed of large number of
highly interconnected processing elements
working in unison to solve a specific problem.

14

Biological neurons 15

 Biological neurons are the fundamental units of the brain and nervous system.

 A neuron is formed from four basic parts:

• the dendrites collect incoming signals (inputs);

• the soma processes the incoming signals over
time and converts the processed value into an
output;

• the axon works as a transmission line;

• at the end of the axon there are the synapses
that are connected to other neurons to
transmit the output signal.

Artificial neuron 16

 The artificial neuron model, firstly proposed by McCulloch and Pitts in 1943, has been
designed to mimic the behavior of biological neurons:

• it receives one or more inputs and sums them to
produce an output (or activation);

• each input is separately weighted, and the sum is
passed through a non-linear function (called activation
function).

𝑛𝑒𝑡 = 𝑤0 +

𝑖=1

𝑑

𝑖𝑛𝑖 ⋅ 𝑤𝑖

𝑜𝑢𝑡 = 𝑓 𝑛𝑒𝑡

𝑖𝑛0 = 1 (bias)

𝑤0
𝑖𝑛1

𝑤1

𝑖𝑛𝑑

…

𝑤𝑑

𝑜𝑢𝑡

Σ 𝑓
𝑛𝑒𝑡

Artificial neuron (2) 17

 𝑖𝑛1, ⋯ , 𝑖𝑛𝑑 are the neuron inputs.

 𝑤1, ⋯ , 𝑤𝑑 are weights assigned to each input.

 𝑤0 (called bias) allows to shift the activation function by
adding a constant to the input. Bias is used to delay the
triggering of the activation function.

 As first step, the neuron computes a weighted sum (𝑛𝑒𝑡)
of all its inputs.

 𝑛𝑒𝑡 is passed into the activation function (𝑓) to compute
the output (or activation) of the neuron (𝑜𝑢𝑡).

𝑛𝑒𝑡 = 𝑤0 +

𝑖=1

𝑑

𝑖𝑛𝑖 ⋅ 𝑤𝑖

𝑜𝑢𝑡 = 𝑓 𝑛𝑒𝑡

𝑖𝑛0 = 1 (bias)

𝑤0
𝑖𝑛1

𝑤1

𝑖𝑛𝑑

…

𝑤𝑑

𝑜𝑢𝑡

Σ 𝑓
𝑛𝑒𝑡

Brain 18

 A single biological neuron is a weak element but connected with billions of other neurons
become a powerful network called brain.

 The human brain contains about 100 billion (1011) neurons that communicate by electric
and chemical signals through more than a 100 trillion (1014) synapses (connections).

Artificial neural networks 19

 Similar to the brain, an Artificial Neural Network (ANN) is made up of artificial neurons
connected to each other.

 Each connection (called edge), like the synapses in a biological brain, can transmit a signal
to other neurons.

 The weight associated to each connection increases or decreases the strength of the
signal.

 Typically, neurons are aggregated into layers. Different layers may perform different
transformations on their inputs.

 Signals travel from the first layer (the input layer), to the last layer (the output layer),
possibly after traversing the layers multiple times.

Artificial neural networks (2) 20

 A Feed-Forward Neural Network (FFNN) is an ANN where connections between neurons
do not form a cycle.

 Multi-Layer Perceptron (MLP) is the most common FFNN consisting of three or more
layers:

• an input layer;

• one or more hidden layers;

• an output layer.

Input layer Hidden layer Output layer

 MLPs are fully-connected:

• each neuron in one layer is connected with every neuron
in the following layer.

The learning process 21

 The learning process is a key feature of ANNs and it is closely related to how the human
brain learn.

 Iteratively, the training data are presented to the network (forward), then the weights are
adjusted (backward) on the basis of how similar the values returned by the network are
compared to the desired ones (loss).

Forward

Backward

Loss

• After all cases are presented, the process often starts over again.

• During the learning phase, the weights are adjusted to improve
the performance on the training data.

The learning process (2) 22

K
n

o
b

s ad
ju

stm
en

t

The learning process (3) 23

Dog

Cat

Training data

Input layer Hidden layer Output layer

Error = predicted output − desired output

Weights adjustment

Overfitting and underfitting 24

 The goal of a good machine learning model is to generalize well from the training data to
any data from the problem domain. This allows to make predictions on data the model
has never seen.

Overfitting and underfitting (2) 25

 The danger when working with finite training samples is to discover apparent associations
not present in the underlying population from which our training set was drawn.

 The phenomenon of fitting the training data more closely than the underlying distribution
is called overfitting.

Overfitting and underfitting (3) 26

 Vice versa, underfitting refers to a network that can neither model the training data nor
generalize to new data.

Overfitting and underfitting – solutions 27

 There are two ways to approach overfitting:

• increase the size of the training set;

• reduce the complexity of the network.

 Underfitting can be avoided by:

• increasing the complexity or the type of the model;

• increasing the training time to minimize the cost function.

Backpropagation

28

Backpropagation 29

 Backpropagation algorithm is probably the most fundamental component of an Artificial
Neural Network (ANN).

 After each forward pass through a network, backpropagation performs a backward pass
while adjusting the model’s parameters (weights and biases).

 The parameters are updated by computing gradients of expressions through automatic
differentiation and recursive application of chain rule.

𝑤′ = 𝑤 − 𝜂 ⋅
𝜕𝐸

𝜕𝑤

New weight

Old weight

Learning rate

Partial derivative of the loss
function with respect to weight 𝑤

Error surface:

𝐸(𝒘 = 𝑤1, 𝑤2)

𝑤1
𝑤2

Gradient
𝜕𝐸

𝜕𝑤1
,
𝜕𝐸

𝜕𝑤2

Backpropagation on an ANN – an example 30

 Given the following ANN:

H1

H2

O1

I1

I2

𝑤I1,H1
= 0.11

𝑤I2,H2
= 0.08

𝑜𝑢𝑡O1

Backpropagation on an ANN – an example (2) 31

 Consider the inputs 𝑥1 = 2, 𝑥2 = 3, the desired output 𝑦 = 1, and the identity function
as activation function.

Forward pass

H1

H2

O1

I1

I2

𝑤I1,H1
= 0.11

𝑤I2,H2
= 0.08

𝑜𝑢𝑡H2
= 2 ⋅ 0.12 + 3 ⋅ 0.08 = 0.48

𝑜𝑢𝑡H1
= 2 ⋅ 0.11 + 3 ⋅ 0.21 = 0.85

𝑥1 = 2

𝑥2 = 3

𝑜𝑢𝑡O1

Backpropagation on an ANN – an example (3) 32

Forward pass

H1

H2

O1

I1

I2

𝑤I1,H1
= 0.11

𝑤I2,H2
= 0.08

𝑜𝑢𝑡H2
= 0.48

𝑜𝑢𝑡H1
= 0.85

𝑥1 = 2

𝑥2 = 3

𝑜𝑢𝑡O1 = 0.85 ⋅ 0.14 + 0.48 ⋅ 0.15 = 0.191

Backpropagation on an ANN – an example (4) 33

 We have to reduce the error (𝐸) between the desired and the predicted outputs.

 The most used loss function for the regression task is the Square Error (SE):

SE 𝐲, ො𝐲 =
σ𝑖=1
𝑛 𝑦𝑖 − ො𝑦𝑖

2

𝑛

where 𝐲 and ො𝐲 are the desired and the predicted outputs, respectively.

SE = 1 − 0.191 2 = 0.654

 We use backpropagation formula to update weights: 𝑤′ = 𝑤 − 𝜂 ⋅
𝜕𝐸

𝜕𝑤
with 𝜂 = 0.05.

Backpropagation on an ANN – an example (5) 34

Backward pass

H1

H2

O1

I1

I2

𝑤I1,H1
= 0.11

𝑤I2,H2
= 0.08

𝑜𝑢𝑡H2
= 0.48

𝑜𝑢𝑡H1
= 0.85

𝑥1 = 2

𝑥2 = 3

𝑤′H2,O1 = 0.15 − 0.05 ⋅ −0.78 = 0.15 + 0.04 = 0.19

𝑤′
H1,O1 = 0.14 − 0.05 ⋅ (−1.38) = 0.14 + 0.07 = 0.21

𝑜𝑢𝑡O1 = 0.191

Backpropagation on an ANN – an example (6) 35

Backward pass

H1

H2

O1

I1

I2

𝑤I1,H1
= 0.11

𝑤I2,H2
= 0.08

𝑜𝑢𝑡H2
= 0.48

𝑜𝑢𝑡H1
= 0.85

𝑥1 = 2

𝑥2 = 3

𝑤′I1,H1
= 0.11 − 0.05 ⋅ −0.45 = 0.11 + 0.02 = 0.13

𝑤′I2,H1
= 0.21 − 0.05 ⋅ −0.68 = 0.21 + 0.03 = 0.24

𝑤′I1,H2
= 0.12 − 0.05 ⋅ −0.49 = 0.12 + 0.02 = 0.14

𝑤′I2,H2
= 0.08 − 0.05 ⋅ −0.73 = 0.08 + 0.04 = 0.12

𝑜𝑢𝑡O1 = 0.191

Backpropagation on an ANN – an example (7) 36

Forward pass

H1

H2

O1

I1

I2

𝑤I1,H1
= 0.13

𝑤I2,H2
= 0.12

𝑜𝑢𝑡H2
= 2 ⋅ 0.14 + 3 ⋅ 0.12 = 0.64

𝑜𝑢𝑡H1
= 2 ⋅ 0.13 + 3 ⋅ 0.24 = 0.98

𝑥1 = 2

𝑥2 = 3

𝑜𝑢𝑡O1

Backpropagation on an ANN – an example (8) 37

SE = 1 − 0.327 2 = 0.453 (< 0.654)

Forward pass

H1

H2

O1

I1

I2

𝑤I1,H1
= 0.13

𝑤I2,H2
= 0.12

𝑜𝑢𝑡H2
= 0.64

𝑜𝑢𝑡H1
= 0.98

𝑥1 = 2

𝑥2 = 3

𝑜𝑢𝑡O1 = 0.98 ⋅ 0.21 + 0.64 ⋅ 0.19 = 0.327

Convolutional neural
networks

38

”

“A Convolutional Neural Network (CNN)
is a deep learning neural network
designed for processing structured
arrays of data such as images.

39

From DeepAI

https://deepai.org/machine-learning-glossary-and-terms/convolutional-neural-network

Applications 40

 Nowadays, CNNs are used to solve several computer vision problems including:

• Identity recognition

• Image classification

• Object detection

• Scene labeling

• Visual search

• Action recognition

• Document analysis

• Anomaly detection

• Video analysis

Problem with traditional neural networks 41

 There are several drawbacks when common Artificial Neural Networks (ANNs), such as
MultiLayer Perceptron (MLP), are used for image processing:

• MLPs use one neuron for each input. The amount of weights rapidly becomes unmanageable
for large images.

600x400 pixels
3 color channels (RGB)

…

Flattened into
600 ⋅ 400 ⋅ 3 = 720000

input neurons

5 hidden
neurons

720000 ⋅ 5 = 3.6
millions weights

(for a single layer)

Problem with traditional neural networks (2) 42

• MLPs react differently to an image and its shifted version because they are not translation
invariant.

• Most important: spatial information is lost when the image is flattened into an MLP. Pixels that
are close together are important because they help to define the features of an image.

Visual cortex 43

 In 1968, D. H. Hubel and T. N. Wiesel demonstrated that mammals visually perceive the
world around them using a layered architecture of neurons in the brain.

 The structure of the visual cortex is in layers. As information is passed from our eyes to
the brain, higher and higher order representation are formed.

Visual cortex (2) 44

 Within the visual cortex, complex functional responses generated by “complex cells” are
constructed by combining more simplistic responses from “simple cells”.

• Simple cells respond to edges with a specific orientation in a particular position (called
receptive field).

• Complex cells respond to edges with a specific orientation regardless of the position where
they are located (obtaining spatial invariance).

Receptive field

 Spatial invariance is obtained by "summing" the
contribution of simple cells responding to the
same orientation but with different receptive
fields.

The architecture of CNNs 45

 This is the inspiration behind CNNs. Higher and higher representations are formed
through the layers:

• the early layers, taking in the raw pixels, find edges;

• then more abstract features are found by combining these edges;

• finally, the last layers find higher order semantic meaning.

The architecture of CNNs (2) 46

 CNNs have been introduced in 1998 by Y. LeCun and Y. Bengio.

 Their architecture is based on:

• local connections;

• layering;

• spatial invariance.

 The main differences compared to an MLP are:

• local connections - neurons are only locally connected to neurons of the previous level with a strong
reduction of the number of connections;

• shared weights - different neurons of the same level perform the same operation on different
portions (receptive field) of the input with a strong reduction of the number of weights;

• alternation of feature extraction and pooling layers (this is no longer true for the most recent CNNs).

The architecture of CNNs (3) 47

 A CNN is a combination of two basic building parts:

• The convolutional part — it consists of convolutional and pooling layers. This part forms the
essential component of feature extraction.

• The fully-connected part — it consists of a fully-connected neural network architecture. This
part performs the task of classification based on the input from the convolutional part.

The architecture of CNNs (4) 48

 A CNN is a sequence of layers, and every layer transforms one volume of activations to
another through a differentiable function.

 Three main types of layers are used to build CNN architectures:

• Convolutional layer – it contains a set of learnable filters. The width and height of the filters are
smaller than those of the input volume. The filter slides across the input and the dot products
between the input and filter are computed at every spatial position.

• Pooling layer- it reduces the number of parameters and computation by down-sampling the
representation.

• Fully-connected layer - neurons in a fully-connected layer have full connections to all
activations in the previous layer, as seen in traditional ANNs.

Convolution 49

 Convolution is one of the most important image processing operations.

 A filter strides across the width and height of the input and the dot product between the
filter and the input is computed at each position.

Edge detection

Sharpen
Filter

Convolutional layer 50

 A CNN autonomously learns the kernel weights during the training process.

 Usually, the first convolutional layer is responsible to identify low-level features such as
edges, color, gradient orientation, etc.

 The subsequent layers allow to distinguish increasingly higher-level features, giving the
network a more detailed understanding of the image.

Pooling layer 51

 Often our ultimate task asks some global question about the image, so typically the units
of our final layer should be sensitive to the entire input.

 Moreover, when detecting lower-level features, such as edges, we often want our
representations to be invariant to translation.

 A pooling layer serves the dual purposes of:

• aggregating information to reduce the spatial resolution and maintaining dominant features
(reducing the amount of parameters, the computational power required and the risk of
overfitting);

• mitigating the sensitivity of convolutional layers to location (obtaining an approximate
translation invariance).

Pooling layer (2) 52

 Pooling operator consists of a fixed-shape window that slides over all regions in the input
and computing a single output for each location.

 Unlike convolutional layers, the pooling layer contains no trainable parameters.

 It is not a trainable layer but deterministic, typically calculating either the maximum or
the average value of the elements in the pooling window.

Max pool with 2 × 2
window and stride 26 8

3 4

1 1

5 6

2 4

7 8

1 0

3 4

3 2

1 2

Input

Avg pool with 2 × 2
window and stride 2 3.25 5.25

2.50 2.00

Pooling layer (3) 53

 Max pooling also performs as de-noising by discarding the noisy activations.

 Average pooling simply performs dimensionality reduction as a noise suppressing
mechanism.

 Usually, max pooling performs better than average pooling.

 The pooling layer operates independently on every channel of the input volume keeping
the depth size unchanged.

 As with convolutional layers, pooling layers can change the output shape by padding the
input and adjusting the stride.

Fully-connected part 54

 Usually the fully-connected part is a simple MLP, consisting of two or three hidden layers
and an output layer, that performs the classification among a large number of categories.

𝑦1

𝑦2

𝑦𝑛

Input layer Hidden layer Output layer

𝑥1

𝑥2

𝑥𝑚

…

Flattening

Output volume of the
convolutional part

Fully-connected part

…

…

𝑊

𝐻

𝐶

𝑚 = 𝑊 ⋅ 𝐻 ⋅ 𝐶

LeNet-5 55

 In 1998, LeNet-5 is introduced to recognize handwritten digits in images.

 It consists of:

• three convolutional layers (C1, C3 and C5);

• two average pooling layers (S2 and S4);

• two fully-connected layers (F6 and Output).

Conv
6 kernel
5 × 5

Avg pool
2 × 2

Stride 2

Conv
16 kernel
5 × 5 × 6

Conv
120 kernel
5 × 5 × 16

Avg pool
2 × 2

Stride 2

Full
Connection

Full
Connection

LeNet-5 (2) 56

 It is the first ANN to use convolutional and pooling layers to extract spatial features.

 Tanh has been used as activation function in C1, C3, C5 and F6 layers.

 It contains about 60K trainable parameters.

 It achieved 99% accuracy on the MNIST database containing handwritten characters
divided into 10 classes.

AlexNet 57

 In 2012, AlexNet is introduced, a CNN with an architecture similar to LeNet-5.

 It consists of:

• five convolutional layers;

• three max pooling layers;

• three fully-connected layers.

AlexNet (2) 58

 It won the ImageNet Large Scale Visual Recognition Challenge (LSVRC) 2012 by a very
large margin with a top-5 error rate of 15.3% (compared to 26.2% of the runner-up).

 It showed, for the first time, that learned features can overcome hand-crafted features.

 There are also significant differences with respect to LeNet-5:

• AlexNet is much deeper than LeNet-5;

• ReLU is used as activation function;

• Local response normalization is applied after the first two convolutional layers;

• Dropout (𝑝 = 0.5) is used in the first two fully-connected layers to reduce overfitting;

• Data augmentation is used to artificially enlarge the training set.

 It contains about 60M trainable parameters.

VGGNet 59

 In 2014, the Visual Geometry Group (VGG) proposes a novel CNN called VGGNet.

 It consists of:

• 13 convolutional layers (VGG-16 version);

• five max pooling layers;

• three fully-connected layers.

VGGNet (2) 60

 There are four versions sharing the number of pooling and fully-connected layers but with
a different number of convolutional layers:

• VGG-11 (8);

• VGG-13 (10);

• VGG-16 (13);

• VGG-19 (16).

 VGG-16 reached a top-5 error rate of 7.3% on ImageNet LSVRC-2014.

 VGG-16 contains about 138M trainable parameters.

GoogLeNet 61

 In 2014, GoogLeNet won the ImageNet LSVRC-2014 challenge obtaining a top-5 error rate
of 6.7% with about 7M trainable parameters.

 It consists of:

• three convolutional layers;

• four max pooling layers;

• nine inception modules;

• a global average pooling layer;

• a fully-connected layer.

Inception modules

In
p

u
t

O
u

tp
u

t

GoogLeNet – inception module 62

 The basic block in GoogLeNet is called inception module:

28 × 28 × 192

28 × 28 × 64

28 × 28 × 192

28 × 28 × 32

28 × 28 × 96

28 × 28 × 128

28 × 28 × 16

28 × 28 × 32

28 × 28 × 256Volume dimensions
are referred to the first
inception module.

28 × 28 × 64 28 × 28 × 128

28 × 28 × 32

28 × 28 × 256

GoogLeNet – global average pooling 63

 In previous CNNs, fully-connected layers are used at the end of the network and all inputs
are connected to each output.

 In GoogLeNet, global average pooling is used at the end of the network by averaging each
feature map from 7 × 7 to 1 × 1 to drastically reduce the number of weights.

Fully-connected
weights (connections) = 1024 ⋅ 7 ⋅ 7 ⋅ 1024 = 51.4M

Global average pooling
weights (connections) = 0

Avg

ResNet 64

 In 2015, ResNet (Residual neural Network), proposed by Microsoft Research, won the
ImageNet LSVRC-2015 challenge. It consists of:

• a convolutional layer;

• a max pooling layer;

• four residual blocks (B1, B2, B3 and B4);

• a global average pooling layer;

• a fully-connected layer.

Skip connection

B1 B2 B3 B4

ResNet (2) 65

 There are five versions sharing the overall structure but with residual blocks presenting a
different architecture and number of sub-blocks: ResNet-18, ResNet-34, ResNet-50,
ResNet-101 e ResNet-152.

 ResNet won ImageNet LSVRC-2015 overtaking for the first time a human expert with a
top-5 error rate of:

• human expert – 5.1%;

• ResNet-50 – 5.3%;

• ResNet-152 – 4.5%.

 ResNet-50 contains about 25M trainable parameters.

CNNs comparison 66

 ImageNet is a large visual database designed for use in visual object recognition software
containing more than 14 million images collected from the web and labeled by humans.

 ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is an annual international
competition to evaluate image classification and object detection algorithms using the
ImageNet database:

• 1000 classes;

• 1.2M training images;

• 50K validation images;

• 100K test images.

CNNs comparison (2) 67

Top-1 accuracy [%] Top-5 accuracy [%]

1D CNNs for time sequences 68

2D convolutional layer 1D convolutional layer

3D Filter 2D Filter

Recurrent neural networks

69

”

“A Recurrent Neural Network (RNN) is
a type of neural network that
contains loops, allowing information
to be stored within the network.

70

From DeepAI

https://deepai.org/machine-learning-glossary-and-terms/recurrent-neural-network

What is a recurrent neural network? 71

 Feed-Forward Neural Networks (FFNNs) are really good at learning a pattern between a
set of inputs and outputs assuming that all inputs (and outputs) are independent of each
other.

 FFNNs accept a fixed-sized vector as input (e.g., an image) and produce a fixed-sized
vector as output (e.g., probabilities of different classes).

 FFNNs are not well suited to tasks which require previous context for making future
predictions.

 In other words, FFNNs are not designed to take a series of input with no predetermined
limit on size.

What is a recurrent neural network? (2) 72

 For example, if we have to predict the price of a stock, a FFNN can make a prediction (𝐩)
based on the current time (𝐭).

 This is not sufficient to make an accurate prediction because the current stock price
depends on the stock trend and not only on the current time.

𝐭𝑖

𝐩𝑖

FFNN

What is a recurrent neural network? (3) 73

 RNNs are a class of neural networks which not just looks at the current input but uses
sequential data or time series data.

 The output of any layer not only depends on the current input but also on the sequence
of inputs that have came before.

𝐭𝑖

𝐩𝑖

RNN

 This special feature provides it a significant advantage over FFNNs by taking
help of inputs obtained before to predict outputs at the later stage.

 Another way to think about RNNs is that they have a “memory” which
captures information about what has been previously calculated.

What is a recurrent neural network? (4) 74

 Why not repeatedly call a FFNN?

 Because each input item from the series is related to the others and it has an influence
on its neighbors. Otherwise it is not a series but only many inputs.

 RNNs are able to capture this relationship across inputs meaningfully.

𝐭1

𝐩1

FFNN

𝐭2

𝐩2

FFNN

𝐭3

𝐩3

FFNN

𝐭𝑛

𝐩𝑛

FFNN

…

Applications

 Machine translation

 Natural language processing

 Robot control

 Time series prediction

 Speech recognition

 Speech synthesis

 Time series anomaly detection

 Sentiment analysis

 Rhythm learning

 Music composition

 Grammar learning

 Handwriting recognition

 Human action recognition

 Image captioning

 Video tagging

 Text summarization

75

Examples of sequence data 76

 Speech recognition:

 Sentiment analysis:

 Music composition:

 DNA analysis:

 Machine translation:

“There is nothing to like
in this movie.”

AGCCCCTGTGAGGAACTAG

“Do you want to dance with me?”

“The brown fox jumped
over the lazy dog.”

AGCCCCTGTGAGGAACTAG

“Vuoi ballare con me?”

RNNs architecture 77

 The diagram shows a RNN being unrolled (or unfolded) into a full network.

 Unrolling means that the network is written out for the complete sequence.

 Where:

• 𝐱𝑡 is the input at time step 𝑡;

• 𝐡𝑡 is the hidden state at time step 𝑡;

• 𝐨𝑡 is the output at time step 𝑡.

𝐱1

𝐨1

RNN

𝐱2

𝐨2

RNN

𝐱3

𝐨3

RNN

𝐱𝑛

𝐨𝑛

RNN…

𝐱

𝐨

RNN
𝐡 𝐡0 𝐡1 𝐡2 𝐡𝑛−1

Unrolling
𝐡3

Types of recurrent neural networks 78

 FFNNs map one input to one output while RNNs inputs and outputs can vary in length.

 RNNs are of different types based on the number of their inputs and outputs.

One-to-one
𝑇𝑥 = 𝑇𝑦 = 1

Traditional FFNNs

Types of recurrent neural networks (2) 79

Many-to-one
𝑇𝑥 > 1, 𝑇𝑦 = 1

Sentiment analysis
Movie rating

Video activity recognition

Types of recurrent neural networks (3) 80

One-to-many
𝑇𝑥 = 1, 𝑇𝑦 > 1

Music composition
Image captioning

Types of recurrent neural networks (4) 81

Many-to-many
𝑇𝑥 = 𝑇𝑦 > 1

Named-entity recognition
Video classification of each frame

Types of recurrent neural networks (5) 82

Many-to-many
𝑇𝑥 ≠ 𝑇𝑦 , 𝑇𝑥 > 1, 𝑇𝑦 > 1

Machine translation
Speech recognition

Types of recurrent neural networks (6) 83

One-to-one

𝑇𝑥 = 𝑇𝑦 = 1
Cat

Many-to-many

𝑇𝑥 = 𝑇𝑦 > 1

“Luke joined Google as a data
scientists in Mountain view”

“LukePERSON joined GoogleORG as a
data scientists in Mountain viewPLACE”

Many-to-many

𝑇𝑥 ≠ 𝑇𝑦 , 𝑇𝑥 > 1, 𝑇𝑦 > 1
“Do you want to dance with me?” “Vuoi ballare con me?”

Many-to-one

𝑇𝑥 > 1, 𝑇𝑦 = 1

“Dog is running through the water”One-to-many

𝑇𝑥 = 1, 𝑇𝑦 > 1

“This café is great, the staff is really
friendly and the coffee is delicious”

Positive

Advantage and drawbacks of RNNs 84

 Advantages

• Possibility of processing input of any
length.

• Model size not increasing with size of input.

• Computation takes into account historical
information.

• Weights are shared across time.

 Drawbacks

• Computation being slow.

• Exploding and vanishing gradient.

• Difficulty of accessing information from a
long time ago (short-term memory).

• Cannot consider any future input for the
current state.

Advantage and drawbacks of RNNs (2) 85

 Because of the vanishing/exploding gradient problems, RNNs suffer from short-term
memory: they are not able to memorize data for long time and begins to forget its
previous inputs.

 Consider trying to predict the last word in:

“I grew up in France … I speak fluent French”

 Recent information suggests that the next word is probably the name of a language.

 To narrow down which language, we need the context of France, from further back.

 Unfortunately, as the gap between the relevant information and the point where it is
needed grows, RNNs become unable to learn to connect the information.

Advantage and drawbacks of RNNs (4) 86

 Moreover, there are situations where some tokens are irrelevant because carry no
pertinent observation.

Advantage and drawbacks of RNNs (5) 87

Possible solutions:

 Difficulty of accessing information from a long time ago (short-term memory)

• long short-term memory

• gated recurrent units

 Cannot consider any future input for the current state

• bidirectional recurrent neural networks

Long short-term memory 88

 Long Short-Term Memory networks (LSTMs) are a special kind of RNN, capable of
learning long-term dependencies.

 LSTM contains internal mechanisms (called gates) to regulate the information flow.

 These gates can learn which data in a sequence is important to keep or throw away.

 By doing that, it passes relevant information down the long chain of sequences to make
predictions and discards non relevant data.

Long short-term memory (2) 89

 An LSTM has a similar control flow as a RNN. It processes data, passing on information as
it propagates forward. The differences are the operations within the LSTM’s cells.

sigmoid tanh element wise
multiplication

addition concatenation

Forget gate

Output gateInput gate

𝐜𝑡−1 𝐜𝑡

𝐡𝑡𝐡𝑡−1

𝐱𝑡

𝐟𝑡
𝐢𝑡

𝐨𝑡𝐜𝑡

𝐜𝑡−1 previous cell state
𝐡𝑡−1 previous hidden state
𝐱𝑡 current input
𝐟𝑡 forget gate output
𝐢𝑡 input gate output
𝐜𝑡 candidate
𝐨𝑡 output gate output
𝐜𝑡 new cell state
𝐡𝑡 new hidden state

Long short-term memory (3) 90

 The core concept of LSTM is the cell state 𝐜𝑡, and its various gates.

 The cell state act as a transport highway that transfers relative information all the way
down the sequence chain. You can think of it as the “memory” of the network.

 The cell state can carry relevant information throughout the processing of the sequence.

 Even information from the earlier time steps can make its way to later time steps,
reducing the effects of short-term memory.

 As the cell state goes on its journey, information are added or removed to the cell state
via gates.

 The gates are different neural networks that decide which information is allowed on the
cell state.

Long short-term memory (4) 91

 The LSTM have the ability to remove or add information to the cell state, carefully
regulated by structures called gates.

 Gates are a way to optionally let information through. They are composed by a sigmoid
neural network layer.

 A gate returns values between 0 and 1, describing how much of each component should
be let through. A value of 0 means “forget information” while a value of 1 means “kept
information as is”.

 An LSTM has three of these gates, to protect and control the cell state. In particular:

• the forget gate decides what is relevant to keep from prior steps;

• the input gate decides what information are relevant to add from the current step;

• the output gate determines what the next hidden state should be.

Long short-term memory (5) 92

 The first step is to decide what information from the previous cell state 𝐜𝑡−1 should be
kept.

 This decision is made by the forget gate: it looks at the previous hidden state 𝐡𝑡−1 and
the current input 𝐱𝑡, and outputs a value between 0 and 1 for each element of the
previous cell state 𝐜𝑡−1.

Source

https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

Long short-term memory (6) 93

 The next step is to decide what new information will be stored in the new cell state 𝐜𝑡.

 First, the input gate decides which values will be updated given the previous hidden state
𝐡𝑡−1 and the current input 𝐱𝑡 .

 Next, a tanh layer creates a vector of new candidate values (𝐜𝑡) that could be added to
the new cell state (𝐜𝑡).

Source

https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

Long short-term memory (7) 94

 To calculate the new cell state 𝐜𝑡, the previous cell state 𝐜𝑡−1 is multiplied by the forget
output 𝐟𝑡 to remove the things we decided to forget earlier.

 Then the new weighted candidate values (𝐢𝑡⨀𝐜𝑡) are added.

Source

https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

Long short-term memory (8) 95

 Finally, the new hidden state 𝐡𝑡 will be computed from a filtered version of the new cell
state.

 The previous hidden state 𝐡𝑡−1 and the current input 𝐱𝑡 are passed into the output gate
while the new cell state 𝐜𝑡 is passed through a tanh activation function.

 Then the two outputs are multiplied together to decide what information will be carried
by the new hidden state 𝐡𝑡.

Source

https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

Gated recurrent units 96

 Gated Recurrent Units (GRU) belongs to the newer generation of RNNs and it is pretty
similar to an LSTM but with fewer parameters as it lacks an output gate.

 GRU has only two gates:

• the reset gate decides how much past information to forget;

• the update gate acts similar to the forget and input gates of an LSTM. It decides what
information to throw away and what new information to add.

 GRU's performance on certain tasks was found to be similar or even better than that of
LSTM.

 GRU uses less memory and is faster than LSTM.

 In general LSTM outperforms GRU especially when using datasets with longer sequences.

Gated recurrent units (2) 97

 Note that, in GRU the new hidden state and the new output are the same.

𝐡𝑡𝐡𝑡−1

𝐱𝑡

𝐨𝑡

𝐫𝑡
𝐳𝑡 ሚ𝐡𝑡

Reset gate

Update gate

𝐡𝑡−1 previous hidden state
𝐱𝑡 current input
𝐫𝑡 reset gate output
𝐳𝑡 update gate output
ሚ𝐡𝑡 candidate hidden state
𝐡𝑡 new hidden state
𝐨𝑡 new output

Bidirectional recurrent neural networks 98

 The objective in a typical sequence learning scenario is to model the next output given a
sequence of past information.

 Sometimes it is not enough to learn from the past to predict the future, but it is also
important to look into the future to fix the past.

 Consider the task of filling in the blank in a text sequence:

“I am ___”

“I am ___ hungry”

“I am ___ hungry, and I can eat half a pig”

 Depending on the amount of information available, we might fill in the blanks with very
different words such as “happy”, “not”, and “very”.

 In such cases, a sequence model (such as RNNs) that is unable of taking advantage of
future information will perform very poorly.

Bidirectional recurrent neural networks (2) 99

 Bidirectional Recurrent Neural Networks (BRNNs) are modified RNNs with ability to look
both back and forth at every time step.

 A BRNN is composed of two RNNs running in opposite directions allowing them to
receive information from both past and future states:

• the input sequence of the first RNN is fed in normal time order;

• the input sequence of the second RNN is fed in reverse time order;

• the outputs of the two RNNs are concatenated at each time step.

 BRNNs are trained with similar algorithms as RNNs, since the two RNNs do not interact
each other.

Bidirectional recurrent neural networks (3) 100

…

𝐱1

𝐨1

𝐡0
F

RNNF

RNNB
𝐡𝑛−1
B

𝐱2

𝐨2

𝐡1
F

RNNF

RNNB
𝐡𝑛−2
B

𝐡2
F

𝐱𝑛

𝐨𝑛

𝐡𝑛−1
F

RNNF

RNNB
𝐡0
B𝐡1

B
…

𝐨1
F 𝐨𝑛

B 𝐨2
F 𝐨𝑛−1

B 𝐨𝑛
F 𝐨1

B

𝐨1 =
𝐨1
F

𝐨𝑛
B

𝐨2 =
𝐨2
F

𝐨𝑛−1
B 𝐨𝑛 =

𝐨𝑛
F

𝐨1
B

𝐱

𝐨

𝐡F
RNNF

RNNB

𝐨F 𝐨B

𝐨 = 𝐨F

𝐨B

𝐡B Unrolling

Autoencoders

101

”

“An autoencoder is a type of
artificial neural network used to
learn efficient data representations
in an unsupervised manner.

102

From Wikipedia

https://en.wikipedia.org/wiki/Autoencoder

What is an autoencoder? 103

 The aim of an AutoEncoder (AE) is to learn a representation (encoding) for a set of data,
typically for dimensionality reduction, by training the network to ignore signal “noise”.

 AEs transform the input into a new representation (called code or latent-space
representation) and then reconstruct the output from this representation.

 An AE is composed by:

• an encoding function 𝐸(𝐱):ℝ𝑛 ⟶ℝ𝑘 outputting a latent representation 𝐬;

• a decoding function 𝐷(𝐬):ℝ𝑘 ⟶ℝ𝑛 computing the reconstructed output 𝐨.

𝐱 𝐬 𝐨𝐸 𝐱 𝐷 𝐬

Applications 104

 Clustering

 Dimensionality reduction

 Classification

 Data generation

 Information retrieval

 Anomaly detection

 Data denoising

 Data reconstruction

 Machine translation

 Recommendation systems

Autoencoder architecture 105

 The simplest form of an AE is a feed-forward neural network having an input layer and an
output layer with the same number of neurons and one or more hidden layers connecting
them.

 The purpose is to minimize the difference between the input and the output.

Input Code Output

Encoder Decoder
 An AE consists of two parts:

• the encoder (𝐸) – it compresses the input (𝐱) and produces the code (𝐬);

• the decoder (𝐷) – it reconstructs the input (𝐨) starting from the code (𝐬).

 An AE can be trained by minimizing the reconstruction error, ℒ 𝐱, 𝐨 ,
which measures the difference between the input and its
reconstruction.

The risk of trivial identity 106

 If the only purpose of AEs is to copy the input to the output, they would be useless.

 The hope is that during training the latent representation will take on useful properties.

 The risk is the AE could learn the so-called identity function, so the output equals the
input, and does not perform any useful representation learning or dimensionality
reduction.

Input Output

Undercomplete autoencoders 107

 To avoid this risk, the simplest solution is to use a bottleneck layer which forces a
compressed knowledge representation of the original input constraining the amount of
information that can traverse the full network (𝑘 < 𝑛).

Input OutputBottleneck layer containing a
compressed representation

Different types of autoencoders 108

 Several variants exist to the basic model, with the aim of forcing the learned
representations to assume useful properties:

• denoising autoencoders;

• sparse autoencoders;

• variational autoencoders;

• conditional variational autoencoders.

Denoising autoencoders 109

 Denoising AEs prevent the network learning the identity function by corrupting the input
data on purpose (adding noise or masking some of the input values) and making it
recover the original noise-free data.

 The AE cannot simply copy the input to its output, but it is forced to extract useful
features that constitute better higher-level representations of the input.

 The input corruption is performed only during the training phase. Once the model has
learnt the optimal parameters, in order to extract the representations from the original
data no corruption is added.

Original
input

Noisy
input

Code Output

Noise

Sparse autoencoders 110

 Sparse AEs represent an alternative method to avoid that the model learns the identity
function, without a reduction in the number of neurons, by using a sparsity constraint.

 A penalty term is added to the loss function such that only a fraction of the neurons
become active:

ℒ 𝐱, 𝐨 + Ω 𝐡

where Ω is a penalty function on hidden layer activations (𝐡).

 This forces the AE:

• to represent each input as a combination of small number of neurons;

• to discover interesting structure in the data.

Input
layer

Hidden
layer

Output
layer

Inactive neurons

Can AEs be used to generate new data? 111

 Given an AE, can new data be generated by decoding points that are randomly sampled
from the latent space?

Can AEs be used to generate new data? (2) 112

 The quality and relevance of generated data depend on the regularity of the latent space.

Can AEs be used to generate new data? (3) 113

 To make generative process possible, the latent space must satisfy two requirements:

• continuity - two close points in the latent space should not give two completely different
contents once decoded;

• completeness - points in the latent space should give meaningful content once decoded.

 Unfortunately, it is very difficult (if not impossible) to ensure, a priori, that the latent
space, created by the encoder, satisfies these requirements.

Variational autoencoders 114

 A Variational AutoEncoder (VAE) is an AE whose training is regularized to avoid overfitting
and ensure that the latent space satisfies continuity and completeness requirements to
enable generative process.

 To regularize the latent space, instead of encoding an input as a single point, each input is
encoded into the parameters of a 𝑘-dimensional multivariate normal distribution (mean
𝛍 and covariance matrix 𝚺) over the latent space of size 𝑘.

AE

VAE

Input
sample

Variational autoencoders (2) 115

 The model is trained as follows:

1. the input (𝐱) is encoded as distribution over the latent space (𝛍𝐱, 𝚺𝐱);

2. a point (𝐬) in the latent space is sampled from the normal distribution (𝒩 𝛍𝐱, 𝚺𝐱);

3. the sampled point (𝐬) is decoded (𝐨𝐬), and the reconstruction error is computed;

4. the reconstruction error is backpropagated through the network.

Sampling

𝐬~𝒩 𝛍𝐱, 𝚺𝐱

Encoder

𝛍𝐱

𝚺𝐱

𝐱

Decoder

𝐨𝐬

𝐬

Variational autoencoders (3) 116

 The only fact that VAEs encode inputs as distributions instead of simple points is not
sufficient to ensure continuity and completeness.

 Without a well-defined regularization term, the model can learn to ignore distributions
and acting like almost classic AEs by returning:

• distributions with very small variances (like punctual distributions);

• distributions with very different means (far from each other in the latent space).

Variational autoencoders (4) 117

 To avoid these effects, both the covariance matrix and the mean of the distributions
returned by the encoder need to be regularized.

 This regularization is done by enforcing distributions to be close to a standard normal
distribution (with mean zero and covariance matrix equals to the identity matrix).

 In this way:

• the covariance matrices will be close to the identity, preventing punctual distributions;

• the mean will be close to zero, preventing distributions to be too far apart from each other.

Variational autoencoders – an example 118

 The encoder takes in handwritten digit images and produces probability distributions in
the latent space.

Variational autoencoders – an example (2) 119

 The decoder can produce reasonable handwritten digit images given sampled points from
the latent distribution.

Can VAEs be used to generate specific data? 120

 A VAE cannot generate specific data (e.g., a particular number on demand) by decoding a
point randomly sampled from the latent distribution.

 It is because the encoder models the latent space directly based on the input not caring
about its type.

 Similarly, the decoder models the output based only on the point sampled from the
latent distribution.

Conditional variational autoencoders 121

 A Conditional Variational AutoEncoder (CVAE) is a VAE with an extra input to both the
encoder and the decoder to shape the entire generative process on a specific input.

 At training time, the input type 𝐲 (i.e., the class, label or category) is provided to both the
encoder and decoder.

Encoder
Sampling

𝐬~𝒩 𝛍𝐱,𝐲, 𝚺𝐱,𝐲

𝛍𝐱,𝐲

𝚺𝐱,𝐲

𝐱

Decoder

𝐨𝐬,𝐲

𝐬

𝐲
𝐲

Conditional variational autoencoders (2) 122

 To generate a specific output, the desired type is fed into the decoder along with a
random point sampled from the latent distribution.

 If the same latent point is fed in to produce two different outputs, the process will work
correctly, since the system no longer relies on the latent space to encode the type.

Conditional variational autoencoders (3) 123

 In a CVAE, the latent space encodes other information.

 In the handwritten digit example, it could encode information such as stroke width or the
angle at which the number is written.

VAE

0
1

2

3

4
5

6

7

8

9

CVAE

Stroke width

A
n

gl
e

Generative models

124

”

“Approaches that explicitly or implicitly model
the distribution of inputs as well as outputs
are known as generative models, because by
sampling from them it is possible to generate
synthetic data points in the input space.

125

From Pattern Recognition and Machine Learning

https://www.springer.com/gp/book/9780387310732

Discriminative vs generative modeling 126

 The fundamental difference between discriminative and generative models is:

• discriminative models learn the boundary between classes;

• generative models explicitly/implicitly model the distribution of individual classes.

Discriminative vs generative modeling (5) 127

 Example - classify an animal as a cat or a dog based on weight and height:

• a discriminative approach finds a decision boundary that separates cats and dogs and checks on
which side of the decision boundary the new observation falls.

• a generative approach builds models of what cats and dogs like and compares the new
observation against the two models.

Discriminative

Decision boundary

Generative

Decision boundary
𝑝 𝑥, 𝑑𝑜𝑔 = 𝑝 𝑥, 𝑐𝑎𝑡

𝑝 𝑥, 𝑑𝑜𝑔

𝑝 𝑥, 𝑐𝑎𝑡

Classes of generative models 128

 Generative models can be divided into two categories:

• explicit density models define an explicit density function 𝑝𝑚𝑜𝑑𝑒𝑙 𝑥 similar to 𝑝𝑑𝑎𝑡𝑎 𝑥 ;

• Implicit density models define a stochastic process that, after training, aims to draw samples
from the underlying data distribution 𝑝𝑑𝑎𝑡𝑎 𝑥 without explicitly defining it.

Generative
models

Explicit density Implicit density

Classes of generative models (2) 129

 The main difficulty in designing an explicit model is to capture all of the complexity of the
data to be generated while still maintaining computational tractability.

 What if we want to explicitly model the distribution of horse images in order to generate
new full HD imaginary horses?

• Full HD (1920 × 1080) RGB images have more than 6M dimensions. It is impossible to deal
with functions in such high-dimensional space.

 Implicit models do not care about the data distribution, their objective is to produce
outputs as similar as possible to the real ones.

Applications 130

 Image denoising

 Image inpainting

 Image super-resolution

 Image generation

 Image-to-image translation

 Text-to-image synthesis

 Exploration in reinforcement learning

 Neural network pretraining

 Language generation

 Text-to-speech

 Imitation learning

 Classification

Applications – image inpainting 131

Applications – image super-resolution 132

Original
Bicubic

interpolation
Super-resolution

GAN

Applications – image generation 133

Applications – image-to-image translation 134

Deep generative models 135

 Deep generative models are formed through the combination of generative models and
deep neural networks.

 The basic idea is to force the model to discover and efficiently internalize the essence of
the data in order to generate it.

 The most popular deep generative models are:

• variational autoencoders (explicit density models);

• generative adversarial networks (implicit density models).

”

“Generative adversarial networks
are the most interesting idea in
the last 10 years in machine
learning.

136

Yann LeCun

Generative adversarial networks 137

 Generative Adversarial Networks (GANs) are a model architecture for training a
generative model designed by I. J. Goodfellow and his colleagues in 2014.

 GANs rely on the idea that a generator is good if we cannot tell fake data apart from real
data.

Which of these photos is a fake?

1 2 3 4

5 6 7 8

Generative adversarial networks – architecture 138

 The GAN model architecture consists of two sub-models:

• the generator 𝐺 is trained to produce plausible data (fake);

• the discriminator 𝐷 is trained to distinguish the generator’s fake data from real examples.

 The two models are trained together, in an adversarial game, until the discriminator
model is no longer able to distinguish a real from a fake example.

 When training begins, the generator produces obviously fake data, and the discriminator
quickly learns to tell that it is fake.

Generated data Real dataDiscriminator

FAKE REAL

Generative adversarial networks – architecture (2) 139

 As training progresses, the generator gets closer to producing output that can fool the
discriminator.

 Finally, the discriminator starts to classify fake data as real, and its accuracy decreases.

Real dataDiscriminator

FAKE REAL

Generated data

Real dataDiscriminator

REAL REAL

Generated data

Generative adversarial networks – architecture (3) 140

𝐳

𝐺 𝐳𝑗 𝐗𝑖

Generative adversarial networks – training 141

 GAN training proceeds in alternating periods:

1. the discriminator 𝐷 trains for one or more epochs (keeping the generator constant);

2. the generator 𝐺 trains for one or more epochs (keeping the discriminator constant);

3. repeat steps 1 and 2 to continue training the discriminator and generator.

 As the generator improves with training, the discriminator performance gets worse
because the discriminator cannot easily tell the difference between real and fake.

 If the generator succeeds perfectly, then the discriminator has a 50% accuracy.

Generative adversarial networks – training (2) 142

 The discriminator feedback gets less meaningful over time. If the GAN continues training
past the point when the discriminator is giving completely random feedback, then the
generator starts to train on junk feedback, and its own quality may collapse.

 For this reason, it is important to monitor the quality of the generated output and stop
training once the discriminator has lost the game to the generator.

Generative adversarial networks – variations 143

 Several variations of original GAN architecture have been proposed in literature to solve
specific problems including:

• Conditional GANs;

• Deep Convolutional GANs;

• Pix2Pix;

• CycleGANs.

Conditional GANs 144

 Is there any way to provide extra information to the model about what type of output we
want to generate?

 In 2014, M. Mirza and S. Osindero proposed an extension to GAN architecture (called
conditional GAN - cGAN) allowing to condition the data generation process by providing
additional information to both generator and discriminator.

 The additional input (𝑐) can be any kind of auxiliary information, such as class labels or
data from other modalities.

 cGANs are used in a variety of tasks such as:

• text-to-image generation;

• image-to-image translation.

Conditional GANs – architecture 145

Additional
information (𝑐)

𝐳

𝐺 𝐳𝑗 𝐗𝑖

Conditional GANs – results 146

GAN cGAN

Deep convolutional GANs 147

 Deep Convolutional GAN (DCGAN) is a generative adversarial network architecture,
designed in 2015 by A. Radford, L. Metz and S. Chintala, for unsupervised learning.

 Before the introduction of DCGANs, several attempts to improve GANs to model images
using CNNs have been unsuccessful primarily due to training instability.

Deep convolutional GANs – results 148

 Some generated images of bedrooms after training on the LSUN bedrooms dataset.

Deep convolutional GANs – results (2) 149

 The authors showed that the generator has interesting vector arithmetic properties using
which the generated images can be manipulated:

• Input vector interpolation

o The input vector 𝐳 is a 𝑛 dimensional vector in a 𝑛 dimensional space.

o If interpolation is performed between two input vectors 𝐳1 and 𝐳2, a gradual change can be seen.

𝐳1 𝐳2

Deep convolutional GANs – results (3) 150

• Vector arithmetic

o Simple arithmetic operations revealed rich linear structure in representation space.

o e.g.: 𝐳𝑚𝑎𝑛𝑤𝑖𝑡ℎ 𝑔𝑙𝑎𝑠𝑠𝑒𝑠 − 𝐳𝑚𝑎𝑛𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑔𝑙𝑎𝑠𝑠𝑒𝑠 + 𝐳𝑤𝑜𝑚𝑎𝑛𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑔𝑙𝑎𝑠𝑠𝑒𝑠 can result in a vector

whose nearest neighbor was the vector for 𝑤𝑜𝑚𝑎𝑛 𝑤𝑖𝑡ℎ 𝑔𝑙𝑎𝑠𝑠𝑒𝑠.

o Experiments working on only single samples were unstable. Averaging the 𝐳 vector for multiple
exemplars showed consistent and stable generations that semantically obeyed the arithmetic.

Man with
glasses

Man without
glasses

Woman
without glasses

Woman with
glasses

Pix2Pix 151

 Pix2Pix is a cGAN model proposed in 2016 for general purpose image-to-image
translation by P. Isola, J. Zhu, T. Zhou and A. A. Efros.

 Image-to-image translation is the task of taking images from one domain and
transforming them so they have the style (or characteristics) of images from another
domain.

Colorization

Super-resolution

Synthesis from
segmentation

Pix2Pix – architecture 152

 The architectures employed for the generator and discriminator closely follow DCGAN:

• an U-Net as generator with batch normalization, LeakyReLU and skip connections;

• a PatchGAN as discriminator that only penalizes structure at the scale of patches.

𝐂 𝐗

𝐗 = 𝐺 𝐂

𝐺 𝐂

𝐷 𝐂,𝐗

Pix2Pix – results 153

Paired vs unpaired image-to-image translation 154

 Training an image-to-image translation model typically requires a large dataset of paired
examples of source and target domain images.

 For example, we can get edge images from photos (e.g., applying an edge detector), to
solve the more challenging problem of reconstructing photo images from edge images.

Edges Photos

Paired vs unpaired image-to-image translation (2) 155

 The requirement for a paired training dataset is a limitation. These datasets are
challenging and expensive to prepare: for instance, photos of different scenes under
different conditions.

 In many cases, the datasets simply do not exist, such as famous paintings and their
respective photographs.

Horses Zebras

Paired vs unpaired image-to-image translation (3) 156

 Is it possible to train an image-to-image translation system without a paired dataset?

 In other word, can general characteristics be extracted from two collections of unrelated
images and used in the image translation process?

 For example, take two collections of horse and zebra photos with unrelated scenes and
locations and translate specific photos from one group to the other.

 This is called the problem of unpaired image-to-image translation.

Horses Zebras

CycleGANs 157

 In 2017, J. Zhu, T. Park, P. Isola, and A. A. Efros proposed the Cycle Consistent Adversarial
Network (CycleGAN) model to perform image-to-image translation without paired
examples.

 Since in unpaired dataset there is no predefined transformation that can be learned by
the generator, the idea behind CycleGANs is to create such transformation.

 To ensure a meaningful relation between input and generated images, the generator is
enforced to preserve those features useful to map a generated image back to the input
image by making a two-step transformation (forming a cycle):

(1)

(2)

1. the input image is mapped from source (A) to target (B) domain;

2. then the obtained image is transformed back from target (B) to
the source (A) domain.

CycleGANs – architecture 158

Cycle 𝐴 → 𝐵 → 𝐴

Cycle consistency loss

𝐷𝐴

𝐷𝐵

𝐈𝐴

𝐺𝐴→𝐵

𝐺𝐴→𝐵 𝐈𝐴

𝐺𝐵→𝐴

𝐺𝐵→𝐴 𝐺𝐴→𝐵 𝐈𝐴

CycleGANs – architecture (2) 159

Cycle 𝐵 → 𝐴 → 𝐵

Cycle consistency loss
𝐷𝐴

𝐷𝐵

𝐈𝐵

𝐺𝐴→𝐵

𝐺𝐵→𝐴

𝐺𝐴→𝐵 𝐺𝐵→𝐴 𝐈𝐵

𝐺𝐵→𝐴 𝐈𝐵

CycleGANs – results 160

Recent generative models 161

BigGAN VQ-VAE

Reinforcement learning

162

”

“Reinforcement learning is the science of
decision making. It is about learning
the optimal behavior in an environment
to obtain maximum reward.

163

Source

https://www.synopsys.com/ai/what-is-reinforcement-learning.html

What is reinforcement learning? 164

 Reinforcement Learning (RL) is a general framework in which an agent learns to behave in
an environment by performing the actions and seeing the results of actions.

 For each good action, the agent gets positive feedback, and for each bad action, the
agent gets negative feedback or penalty.

 The agent learns with the process of hit and trial, and
based on the experience, it learns to perform the task in
a better way using feedbacks without any labeled data.

 RL is an important model of how we (and all animals in
general) learn. Praise from our parents, grades in school,
salary at work – these are all examples of rewards.

Applications 165

Robotics

Adaptive
control

Game playing Chemistry

Business
strategy

Manufacturing

Finance
sector Healthcare

Education

Terms used in reinforcement learning 166

 Agent: an entity that can perceive/explore the environment and act upon it.

 Environment: where the agent learns and decides what actions to perform.

• Anything that the agent cannot change arbitrarily is considered to be part of the environment.

• Usually in RL, the environment is stochastic, which means the next state may be somewhat
random.

 Action: actions are the moves taken by an agent within the environment.

Terms used in reinforcement learning (2) 167

 State: state is a situation returned by the environment after each action taken by the
agent.

 Reward: a scalar feedback returned to the agent from the environment when it performs
specific actions.

 Policy: policy is a strategy applied by the agent for the next action based on the current
state. It defines the agent behavior at a given time by mapping state to action.

• This is how the environment changes in response to the
agent’s action.

• If only a partial description of the state is available to the
agent, it is called observation.

State Observation

Reinforcement learning process 168

 At each time step 𝑡

• The agent:

1. analyzes current environment state 𝑠𝑡;

2. out of possible actions it chooses and executes action 𝑎𝑡.

• The environment:

3. receives action 𝑎𝑡;

4. emits new state 𝑠𝑡+1;

5. return scalar reward 𝑟𝑡+1.

• The agent:

6. updates its knowledge with the reward 𝑟𝑡+1 given by the environment.

 The goal of the agent is to maximize the reward in the long run.

Environment

Agent

Action 𝑎𝑡

Reward 𝑟𝑡 State 𝑠𝑡

𝑠𝑡+1𝑟𝑡+1

Reinforcement learning – example 169

 RL can be easily explained using the game of PacMan as example.

• The goal of PacMan (the agent) is to eat the food in the grid while avoiding the ghosts on its
way.

• The grid is the interactive environment for PacMan.

• PacMan can make four different actions: up, down, left and right.

• PacMan receives:

o rewards for eating food;

o punishments if it gets killed by a ghost (loses the game).

• The state is represented by the locations of PacMan, ghosts and

food in the grid world.

• The total cumulative reward is PacMan winning the game.

Exploration vs exploitation 170

 An agent needs to explore the environment in order to assess its reward structure. After
some exploration, the agent might have found a set of apparently rewarding actions.

 How can the agent be sure that the found actions are actually the best?

 When should an agent continue to explore or else, when should it just exploit its existing
knowledge?

+100K

∞+ 1 ∞+ 1

∞+ 1

Exploration vs exploitation (2) 171

 In order to build an optimal policy, the agent faces the dilemma of exploring new states
while maximizing its reward at the same time.

 This is called exploration vs exploitation dilemma:

• exploration means exploring and capturing more information
about the environment in the hope of finding better actions;

• exploitation involves using the already known information to
maximize the rewards.

”

“ There are only 1015 total hairs on all the human heads
in the world, 1023 grains of sand on Earth, and about
1081 atoms in the known, observable universe. The
number of chess games (estimated around 10100𝐾) is
many times as great as all those numbers multiplied
together — an impressive feat for 32 wooden pieces
lined up on a board.

172

Source

http://www.quantumgambitz.com/blog/chess/chess-stuff/how-many-different-ways-can-a-chess-game-unfold

Deep reinforcement learning 173

 In many practical decision-making problems, the states 𝑠 are high-dimensional (e.g.,
images from a camera or raw sensor stream from a robot) and cannot be solved by
traditional RL algorithms.

 Moreover, the amount of time required to explore each state to create the required Q-
table would be unrealistic.

 Deep RL combines deep neural networks and RL to solve such problems, representing the
policy 𝜋 or other learned functions as a deep neural network.

 Deep RL algorithms can take in very large inputs (e.g., every pixel rendered to the screen
in a video game) and decide what actions to perform to optimize an objective (e.g.,
maximizing the game score) without manual engineering the state space.

Deep Q-learning 174

 One of the fundamental problems involving the use of Q-learning is that the amount of
memory required to store data rapidly expands as the number of states increases.

 With deep Q-learning, the Q-values are estimated with neural networks. The neural
network takes the state as input, and outputs Q-values for all different actions the agent
might take.

Deep Q-network 175

 In 2013, a small company, called DeepMind (immediately bought by Google), developed
Deep Q-Network (DQN).

 DQN learned to play Atari video games by observing just the screen pixels and receiving a
reward when the game score increased.

 DQN has been trained on 49 different Atari games using the same algorithm, architecture
and hyper-parameters and it reached human-level performance on 29 of them.

Deep Q-network – architecture 176

 The DQN consists of:

• three convolutional layers;

• two fully-connected layers.

 Note that, there are no pooling layers because they introduce translation invariance, and
the network would become insensitive to the location of an object in the image.

9

9

64
20

20

32
Input

84

84

4

Output

Convolution
32 kernels
8 × 8

stride=4
+

ReLU

Convolution
64 kernels
4 × 4

stride=2
+

ReLU

Convolution
64 kernels
3 × 3

stride=1
+

ReLU

7
7

64

Fully
connected

+
ReLU

512

Fully
connected

+
Linear

Deep Q-network – input 177

 DQN takes the image of the screen as input state. To reduce the state complexity, and
consequently the computation time, each frame is:

1. transformed in grayscale;

2. cropped to select the region of interest;

3. resized to 84 × 84.

 To solve the problem of temporal limitation and give the network the sense of motion,
DQN takes a stack of four frames as input.

(1) (2) (3)

Deep Q-network – training algorithm 178

initialize network 𝑄 with random weights

for 𝑚 episodes

𝑡 = 0
repeat

with probability ϵ select a random action 𝑎𝑡 otherwise select 𝑎𝑡 = argmax𝑎 𝑄(𝑠𝑡 , 𝑎)
execute action 𝑎𝑡 and observe reward 𝑟𝑡+1 and new state 𝑠𝑡+1
estimate the target value 𝑦𝑡 = 𝑟𝑡+1 + 𝛾 ⋅ max

𝑎
𝑄(𝑠𝑡+1, 𝑎)

perform a gradient descent step to update 𝑄 weights by minimizing 𝑙 = 𝑦𝑡 − 𝑄 𝑠𝑡 , 𝑎𝑡
2

𝑡 = 𝑡 + 1
until terminated

end for

Deep Q-network – experience replay 179

 There is an issue when using neural network as Q approximator: the transitions are very
correlated since they are all extracted from the same episode reducing the overall
variance.

 As a result, the network tends to forget the previous transitions as it overwrites them
with new ones resulting in a network overfitted on the current episode.

For instance, if we are in the first level and then in the
second (which is totally different), the Mario agent can
forget how to behave in the first level.

Deep Q-network – experience replay (2) 180

 To remove correlations and make the DQN training more stable, the experience replay
technique can be used:

• during training, all transitions are stored in a replay memory;

• when updating the network, mini-batches are randomly sampled from the replay memory and
used instead of the most recent transition.

⋯

⋯

Replay memory

Mini-batch

Deep Q-network – examples 181

Source

https://www.youtube.com/watch?v=V1eYniJ0Rnk

Deep Q-network – examples (2) 182

Source

https://www.youtube.com/watch?v=4MlZncshy1Q

Deep Q-network – examples (3) 183

Source

https://www.youtube.com/watch?v=-cKeGk3R3qE

Suggested readings 184

 F. Chollet, "Deep Learning with Python (2nd edition)", Manning Pubblications Co., USA,
2021.

 A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola, "Dive into Deep Learning", 2020.

 M. Elgendy, "Deep Learning for Vision Systems", Manning Publications Co., USA, 2020.

 A. Geron, “Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow:
Concepts, Tools, and Techniques to Build Intelligent Systems”, O'Reilly Media, Inc., USA,
2019.

 M. Nielsen, "Neural Networks and Deep Learning", 2019.

 I. Goodfellow, Y. Bengio, and A. Courville, "Deep Learning", MIT Press, 2016.

https://www.manning.com/books/deep-learning-with-python-second-edition
https://d2l.ai/index.html
https://www.manning.com/books/deep-learning-for-vision-systems
https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/
http://neuralnetworksanddeeplearning.com/index.html
http://www.deeplearningbook.org/

