
Intelligent Agents:
A Gentle Introduction

Giovanni Ciatto @ ASAI-ER, 2023

Algorithms are not enough

What is computer science essentially about

What is computer science essentially about

Algorithm ≈ finite lists of reproducible steps to transform input in output

● Defining algorithms as the recipe for processing interesting problems
○ requires clear representations for input / output / storage data

● Studying algorithms’ time/memory requirements, formally

○ as well as their termination

● Algorithms can be combined to solve more complex problems

Example: sorting algorithm (Bubble sort)
● Input: array of comparable items

○ several algorithms to compare items

○ depending on items type

● Output: sorted array

○ according to comparison strategy

● Many algorithms with different properties

○ e.g. bubble sort

From computer science to software engineering

Computer Science

● algorithms in theory

Software Engineering

● complex systems made of algorithms,
○ in practice

What is software engineering actually about

● How to combine algorithms into systems
○ To create effective/efficient software
○ Keeping them operating and sustainable

● Algorithms written as programs
○ in some programming language

● Combination:
○ one program’s output...
○ ... becomes another program’s input

What is artificial intelligence actually about

● Creating algorithms which emulate some typically-human capability

○ e.g. path-finding (find path between location A and B)

○ e.g. logical reasoning (infer consequences from premises)

○ e.g. planning (figure out which actions to do to reach a goal)

○ e.g. learning (learn new behaviours from examples)

● Creating efficient software implementation for such algorithms

Example: path-finding with A*
● Problem modelled as a search-problem

○ on a graph-like space
■ i.e. locations and reachability

○ input = source/destination as nodes
○ output = sequence of connected nodes

● Combinatorial problem
○ the bigger the graph...
○ ... the harder to find a solution

● Path-finding ≠ navigation
○ navigation is far harder

Example: logic reasoning with Prolog

● Problem modelled as a search-problem
○ on a tree-like space (the proof tree)

■ dependencies among logic rules
○ input = logic statements to be proved
○ output = yes/no + variables assignment

● Combinatorial problem
○ the more the rules...
○ ... the harder to find a solution

Example: planning with STRIPS (pt. 1)

Initial state

● on(b, a)

● ontable(a)

● ontable(c)

● ontable(d)

● clear(b)

● clear(c)

● clear(d)

● armempty

Goal:

● on(c, a)

● on(b, d)

Example: planning with STRIPS (pt. 2)

Example: planning with STRIPS (pt. 3)
● Problem modelled as a search-problem

○ on a graph-like space
■ i.e. states as nodes, actions as arcs

○ input = initial state + goal
○ output = sequence of actions

● Combinatorial problem
○ the bigger the state...
○ the more the admissible actions...
○ ... the harder to find a solution

● Planning ≠ plan execution
○ e.g. action execution may fail...

Possible output plans

1. unstack(b, a) ; stack(b, d) ; pickup(c) ;
stack(c, a)

2. unstack(b, a) ; stack(b, d) ; pickup(a) ;
stack(a, b) ; pickup(c) ; stack(c, a)

3. ...

Example: machine learning (pt. 1)

Example: machine learning (pt. 2)
● Problem modelled as an optimization-problem

○ on the parameters space of some parametric algorithm
■ e.g. linear model, neural network, etc.

○ input = training data + parametric algorithm
○ output = parameters assignment

● Many statistical issues to be taken into account
○ e.g. training set separation
○ e.g. over- or under-fitting

● The parametric algorithm is commonly tailored on one particular task
○ e.g. image classification, text recognition, user proliferation, etc.

● Better to use learning when the task is not easy to formalise/program manually

Are these algorithm intelligent?

● Put it simply:
○ no, not if considered alone

● BTW, what is intelligence after all?
○ philosophical question, many context-dependent answers
○ roughly speaking, just the sake of this talk:

Intelligence ≈ algorithms for smart capabilities
+ criterion about when/how to use/combine them

What is missing?

● Abstractions for

○ describing,

○ designing,

○ engineering,

○ implementing

intelligent software entities (spoiler alert: agents)

Agents and Multi-Agent Systems
Main Notions

What is an agent

● Any entity capable of acting to achieve some goal
○ while being situated into some environment

■ which can be both perceived and affected
○ possibly, along with other agents

■ with which interaction is possible

● Possible examples of agents:
○ human beings, OS processes, OS threads, logic solvers, robots, BDI agents

What is a goal

● A (possibly partial) description of the state of the world to be reached
○ either by a single agent (individual goal)

○ or by a multi-agent system (collective goal)

● “world” ≈ “the environment + other agents”

● Examples of goals:
○ vacuum robot → “the floor should be clean”

○ autonomous car → “reach destination X”

○ virtual personal assistant → “reminder of meeting, 15 minutes before its start”

Many kinds of goals

Weak goal
● goal “hard-coded” in the agent

● e.g. thermostat

vs

Strong goal
● explicit representation of the goal

● e.g. autonomous car reaching a destination

Achievement goal
● situation to reach (then the goal is achieved)
● e.g. reaching a destination

vs

Test goal
● information to acquire (may imply reasoning)
● e.g. finding missing information, asking to someone

vs

Maintenance goal
● situation to keep stable (may need continuous action)
● e.g. maintain temperature in a given range

Sub-goal
● a goal necessary to reach another goal
● e.g. reaching Tokyo, requires:

a. drive to the local airport
b. fly to Tokyo

What is the environment

● The space where agents live and (inter)act.
○ a.k.a. what is external w.r.t. agents

○ enables & constraints agents’ interaction, perception, and action

● Examples of environments:
○ human beings → physical world / social media / . . .

○ Roomba → a house and its floor

○ chat bot → chat history

○ autonomous car → the road

○ OS process/thread → file system + network + environment variables + I/O

What is perception

● The operation by which agents gather information from the environment
○ agents may then represent, memorise, and process perceived information
○ notice that perception may be subject to error

● Percept = the raw information being gathered
Sensor = the interface among the environment and the agent

● Examples of perception:
○ human beings → 5 sense + introspection + proprioception
○ robots → input sensors providing raw measurements (cameras, lisars, etc.)
○ chat bot → chat history
○ OS processes/threads → stdin + other input files, environment variables, system

clock, network channels, serial ports, etc.

What is action

● The operation by which agents affect the environment
○ or at least attempt to so
○ notice that actions may fail in so many way

● Actuator (a.k.a. effector) = the interface among the agent and the environment

● Examples of actuation:
○ human beings → hands, feets, virtually any limb of our bodies, speech
○ robots → actuators (wheels, arms, leds, etc.)
○ chat bot → sending messages
○ OS processes/threads → stdout + other output files, environment variables, network

channels, serial ports, etc.

Sensors and actuators are commonly coupled

● e.g. wheel + odometry

● e.g. touch + haptic sensation

● e.g. limbs movement + proprioception

What is interaction

● Where agents affect (and are affected by) each others
○ may involve both perception and actuation

● Examples of interaction:
○ human beings → speech, mails, chats, non-verbal communication, etc.

○ robots → stigmergy, mutual perception, . . .

○ chat-bot → messages, buttons, etc

○ OS processes/threads → message passing, tuple spaces/centres, etc.

Interaction ⊃ Communication

● Communication = direct (commonly, deliberate) exchange of information

● Interaction may also occur indirectly
○ e.g. via stigmergy

■ e.g. ants and pheromone

What is communication

● Roughly speaking: the exchange of messages to pass information among multiple agents
○ basic mechanism: message passing

● Two roles: sender and receiver exchanging one message

● Message ≈ sender name + receiver name + payload (content) + metadata

● The mechanism may be repeated several to times to create interaction protocols

Examples of interaction protocols (cf. FIPA IPs)

http://www.fipa.org/

The role of the receiver in communication

● Receiver agent may need to eventually handle the message (i.e. trigger some computation)

● How the message is handled depends on the nature of the agent
○ reactive agent: will start a computation as soon as the message is receive

○ computationally-autonomous agent: memorises the message and decides when/how to handle it

About autonomy (of agents)

● Agents are autonomous when they encapsulate (i.e. control) the criterion
○ by which they select which goals to pursue

■ (motivational autonomy)

○ or by which they choose which action to do to while pursuing a goal

■ (executive autonomy)

● Examples of autonomous agents:
○ human agents are autonomous
○ software agents may be more or less autonomous

■ depending on how they have been programmed

About intelligence (of Agents) pt. 1

● Agents are intelligent when they have cognitive capabilities...

● ... and they know when/how to use them to pursue their goal(s)
○ perceiving stimuli and recognise abstractions on top of them

○ representing knowledge (e.g. perceptions, abstractions, goals, actions, etc)

○ and memorising it for later re-use
○ learning from the experience (i.e. generalise the gathered knowledge)

○ planning courses of action to pursue goals

○ reasoning about knowledge (to deduce implicit knowledge, to induce new knowledge, to abduce hypotheses)

○ interact with other agents to exchange information (goals, knowledge, plans)

About intelligence (of Agents) pt. 2

● Cognitive capabilities ⇏ Intelligence
○ Cognitive behaviours may or may not be considered as intelligent

depending on the context they are applied into, and on the observer

● Example:
○ agent stepping through the window at ground floor

○ agent stepping through the window at Nth floor

Focus on cognitive capabilities

About perception

● Commonly consists of getting raw numbers from sensors
○ especially in physical environments

● Relevant examples:
○ e.g. LIDAR (Laser Imaging Detection and Ranging)

■ returns distance of obstacle (maybe + angle)

○ e.g. light sensor

■ the more intense the light, the higher the percept value

○ e.g. proximity sensor

■ the closest the obstacle, the higher percept value

About the reference frame

● Perception is rooted into a reference frame
● ... which rotates and moves with the agent

The role of representation
● In-memory representation of the environment

● Leveraging on some model (of the environment)
○ e.g. relative distances on the plane

● Reified into some language / data schema
○ e.g. matrices, first order logic

● Constructed on top of perception
○ updated when new percept are sensed

● Enabling (more) complex deliberation
○ e.g. compute path, self-localise, etc.

● ... and therefore smarter / articulated actions
○ e.g. navigate to destination

About actuation

● Commonly consists of sending raw numbers to actuators

● The choice of actuators is commonly constrained / limited
○ e.g. because of cost- or physics-related reasons

● Complex actions can be engineered on top of simple actuators

● Notable example: differential wheeled robot
○ 2 parallel, independent wheels

○ actuators can only regulate angular speeds

○ the robot must be able to

■ go straight (equal angular speed)

■ turn right (left angular speed > right angular speed)

■ turn left (left angular speed < right angular speed)

■ rotate (opposite angular speeds)

https://en.wikipedia.org/wiki/Differential_wheeled_robot

● According to Brooks, not really: cf. Intelligence without representation

● e.g. Braitemberg vehicles
○ simple robots

○ stimulus-response hardwired

○ exhibit non-trivial behaviour

● e.g. thermostat
○ repeat forever:

■ if temperature high, cool down

■ if temperature low, warm up

● in general, no representation is ok:
○ for simple control systems

○ to serve some weak goals

Is representation always needed?

https://www.sciencedirect.com/science/article/pii/000437029190053M

How to represent the environment?

Reference frame:
● 2D plane centered on the robot
● obstacles and walls are non-walkable

Raw percepts:
● sample(𝜃₁, d₁)
● sample(𝜃₂, d₂)
●

Maybe, after data fusion:
● obstacle(x, y)
● wall(dx₁, dy₁)
● wall(dx₂, dy₂)
●

Why to represent the environment?

● To make it possible to exploit algorithms to automate decision-making
○ hence performing adequate / smart / intelligent actions

○ recall that algorithms require clear definitions of input data

● Example: the vacuum robot
○ keep track of portions of floor not yet / already clean

○ compute path from one room to the other

○ localise self into the house

○ navigate to target room

○ go back to recharge station

Learning what?
Common choices made data scientists:

1. the target task
a. e.g. classification, regression, clustering, etc.

2. the admissible input data
a. e.g. tables, pictures, time series, audio, video, etc.

3. choose the admissible outcomes
a. classes, amount of clusters, etc.

Not fully automatic workflow:

● training and inference are algorithms

● design choices are for humans

Data-driven learning algorithms require
fixing what to learn

Can software agents learn from data?

Agents who actually learn should:

● have access to data

● be autonomous in design decisions
○ unless the learnable behaviour is

known at design time

● have computational power

Agents exploiting pre-trained models:

● no need to access data

● they can use the model for perception

● no need to take decisions or compute

This is an open research problem! This is state of the art

Can software agents...
... plan their course of action?
... reason to draw novel, original conclusions?

● Same argument as previous slide
○ either the modelling of planning / reasoning is modelled at design time...

○ ... or the agent should be autonomous in taking the decisions commonly taken by designers

■ and this is an open research issue

Many sorts of agents out there
Oversimplified, yet useful, map of what people mean by “agent”

Classic AI agent

● Agents are the entities encapsulating behaviour
○ and, therefore, intelligence

● “Agent” is a useful abstraction to
○ comunicate AI

○ lue AI algorithms together

○ model AI-based systems

○ contextualise individual AI contributions

○ ...

● People in this context may refer to agents meaning “intelligent entities”

○ most commonly, but not necessarily, software entities

Concurrency: focus on control flow issues

● Agents are the entities encapsulating control flow
○ as a precondition for their autonomy

● “Agent” is an active software component doing some long-lasting task

○ e.g. threads, processes, daemons, etc.

● People in this context may refer to agents meaning “active software

entities” i.e. “software entities having their own control flow”

Important notion: control flow

Roughly:
● the sequence of

instructions executed a
untime

Sequential program
● 1 control flow

Concurrent program
● multiple-control flows

Control flow and objects (pt. 1)

class Observable:

 def __init__(self):

 self.observers = []

 def register(self, observer):

 self.observers.append(observer)

 def notify_observers(self, arg):

 for observer in self.observers:

 observer(self, arg)

def observer1(observable, arg):

 print(f'observer1 receives notification form {observable}:', arg)

def observer2(observable, arg):

 while True:

 pass

 print(f'observer2 receives notification form {observable}:', args)

def observer3(observable, arg):

 print(f'observer3 receives notification form {observable}:', arg)

Control flow and objects (pt. 2)

observable = Observable()

observable.register(observer1)

observable.register(observer2)

observable.register(observer3)

observable.notify_observers("X")

Control flow and objects (pt. 3)

● Control flow steps through objects

● Objects are passive entities
○ they only act when traversed by control flow

○ objects do not encapsulate control flow

● Agents do encapsulate control flow
○ agents can say no

https://www.researchgate.net/publication/228855113_Objects_and_Agents_how_do_they_differ

Distributed systems: focus on interaction protocols

● Agents are the entities in charge of communicating over the network
○ commonly, by message-passing
○ possibly, enacting several protocols simultaneously

● “Agent” is a party in some protocol
○ e.g. the client, the server, the broker, the proxy, etc.

● People in this context may refer to agents meaning the “software parties

involved in a procol” or “one node of the distributed system”

Robotics: focus on embodiment & physical world

● Agents are the control software of robots
○ robots have bodies which are immersed in the physical world

● “Agent” is a robot (there including mind + body)
○ e.g. the autonomous car, the vacuum robot, the robotic arm

● People in this context may refer to agents meaning the “robot” as an
animated entity, or “the mind of the robot”

Simulation: focus on behaviour of simulated entities

● Agents are the entities in the simulated world
○ immersed in a simulated environment
○ subject to simulated time

● “Agent” is a simulated entity
○ e.g. a pedestrian in a city, a car in the traffic, a molecule in a solution, etc

● People in this context may refer to agents meaning any “active entity” involved
in a simulation

Important notion: simulation

● (Computational) Simulation ≈ reproducing a system dynamics via software

● General workflow of in-silico experiments:
a. system under study is modelled in a parametric way
b. several simulations are run with different parameters
c. statistics are computed, and patterns are identified
d. conclusions are drawn from those statistics/patterns

● Important aspects of simulations
a. reproducibility

■ determinism

Important notion: multi-agent based simulation

● System under study is modelled as a MAS
a. i.e. several interacting agents into a virtual environment

● Scientists are commonly interested in
a. analysing the evolution of the system

b. analysing the state reached by the system after a while

● Two sorts of simulators: discrete time vs. discrete events

● MABS often opposed to numerical resolution of differential equations

Reinforcement learning: focus on learning policies

● Agents are the entities subject to training (by reward)

● The goal is to learn a policy
○ policy = function returning the best action to do in each possible state

■ state = perceived configuration of the environment
○ optimal policy is the one which maximises expected reward on the long run

■ according to past reward

● People in this context may refer to agents meaning the entity whose perception,
action, and reward should be modelled

Reinforcement learning: Q-table vs DQN

Agent-oriented programming: focus on languages

● Agents are yet another syntactic category of programming languages
○ such as functions, classes, etc.

● AOP is considered the next leap in programming languages, after OOP

● “Agent” is an active object, encapsulating control flow and communication
○ e.g. JADE agents

● People in this context may refer to agents in the same way OOP programmers refer
to classes

AOP as the next leap in programming (after OOP)

How to program software agents
In particular, cognitive agents (e.g. BDI)

Agents programming 101: the control-loop

some data structure here

memory = dict()

while True:

 percepts = sense()

 memory = update(memory, percepts)

 action = deliberate(memory)

 act(action)

def sense():

 ... # return set of percepts

def update(old_memory, percepts):

 ... # return updated memory

def deliberate(memory):

 ... # return action representation

def act(action):

 ... # actually performs action

Example: the thermostat agent (pt. 1)

temperature sensor modelled as Unix file (to be read)

temperature_sensor = open('/dev/temperature_sensor', 'rb')

air pump actuator modelled as Unix file (to be written)

air_pump_actuator = open('/dev/air_pump', 'wb')

memory modelled as key-value dictionary

memory = { 'hot_threshold': 30, 'cold_threshold': 20 } # °C

Example: the thermostat agent (pt. 2)

def sense():

 return temperature_sensor.read(1)[0]

● Read 1 byte from the temperature sensor
○ as simple as reading a file

● Assumption: the sensor outputs current temperature in Celsius degrees
○ encoded as bytes

Example: the thermostat agent (pt. 3)

def update(old_memory, percepts):

 new_memory = dict(**old_memory)

 new_memory['current_temperature'] = percepts

 return new_memory

● Copy-pastes the old memory into a new memory, updating current temperature

● Assumption: percepts actually consist of a single integer number
○ i.e. temperature value in Celsius degrees

Example: the thermostat agent (pt. 4)

def deliberate(memory):

 if memory['current_temperature'] >= memory['hot_threshold']:

 return 'cooldown'

 elif memory['current_temperature'] <= memory['cold_threshold']:

 return 'heatup'

 else:

 return None
● Assumption: actions encoded as strings

○ “cooldown” or “headtup”
○ None denotes the lack of action

Example: the thermostat agent (pt. 5)

def act(action):

 if action == 'cooldown':

 air_pump_actuator.write(b'\0x01')

 elif action == 'heatup':

 air_pump_actuator.write(b'\0x02')

● Assumption: actuator expects commands to be provided as bytes
○ 01 will pump cold hair
○ 02 will pump hot hair

Example: the thermostat agent (Q/A)

● Is the thermostat control-loop an algorithm?

● What is the goal of the thermostat agent?

● Is that a strong or weak goal?

● Is that a maintenance-, achievement-, or test-goal?

● Is the thermostat agent reactive or proactive?

● Is the thermostat agent representing the environment?

● Imagine 2 or more thermostat agents in the same closed room:

○ are they communicating? are they interacting?

About cognitive agents

Cognitive ≈ focus on human-like

capabilities/abstractions

Central aspect: mental state
● i.e., internal representation of:

○ self

○ environment

○ other agents

BDI agents: a particular case of cognitive agents

Cognitive aspects fitting the mental state of each agent:

● Beliefs: the (possibly imprecise) things the agent knows

● Desires: the goals the agent is willing to (eventually) pursue

● Intentions: the activities the agent is currently performing

○ possibly, following some plan

● Plans: the procedural knowledge about how to pursue goals

The role of events in BDI agents
Event-driven architecture:
● everything happens in response to events

What is an event:
● data structure representing relevant happening

○ belief addition / update / removal
○ new (sub-)goal to achieve / test / maintain
○ failed (sub-)goal
○ etc.

New events may spawn intentions to execute plans
● i.e. control flows controlling the agent’ behaviour

○ with some predefined course of action

Control-loop of BDI agents
repeat forever

1. revise belief base with new messages and percepts

2. add relevant events to the events stack
3. pick next event from the event stack, if any

a. if none, do nothing

4. if event is about some prior intention
a. select that intention

5. otherwise, select a plan for the event
a. create a new intention out of that plan, if any

b. otherwise, add failure-event to events stack

6. execute one step of the intention
a. in case of new/failed goals, update

AgentSpeak and Jason
● AgentSpeak: formal semantics for BDI agents

○ introduced by Anand S. Rao in seminal paper

● Jason: actual programming language for BDI agents
○ introduced by Bordini, Hubner, and Woolridge

○ inheriting & extending Prolog’s syntax

○ technologically rooted on the JVM

● Both languages enable AOP with BDI abstractions

https://link.springer.com/chapter/10.1007/BFb0031845

Jason: syntax overview (pt. 1)
Beliefs:

● human(socrates). — a fact which is known to be true

● mortal(X) :- human(X). — a rule for deducing what’s true from axioms

Desires (goals):

● !reach(Destination) — an achievement goal (i.e. something to do)
○ commonly, via actions

● ?discover(Information) — a test goal (i.e. some information to be acquired)
○ commonly, via reasoning, or actions

Jason: syntax overview (pt. 2)

Events:

● +Belief — some new belief / message / percept has been added
● -Belief — some belief / message / percept has been removed
● +Goal — some new goal has been added
● –Goal — some goal has failed (cannot be reached)

○ because of: lack of plans, or failure in action, etc.

Jason: syntax overview (pt. 3)

Actions:

● move(Direction) — external action (involving the environment)

● .send(Message) — internal action (involving the agent)

● !Goal — pursue achievement goal as sub-goal

● ?Goal — pursue test goal as sub-goal

● +Belief — add belief

● -Belief — remove belief

● -+Belief — update belief

Jason: syntax overview (pt. 4)

Plans:

● Event : Guard <- Action1; ...; ActionN.
○ actions to be executed in reaction to Event, if Guard is true

● Event <- Action1; ...; ActionN.
○ lacking Guard = no restrictions

Example: thermostat agent, in Jason
target(20).

+temperature(X) <- !regulate_temperature(X).

+!regulate_temperature(X) : target(Y) & (X - Y > 0.5) <-

 .print("Temperature is ", X, ": need to cool down");

 spray_air(cold).

+!regulate_temperature(X) : target(Y) & (Y - X > 0.5) <-

 .print("Temperature is ", X, ": need to warm up");

 spray_air(hot).

+!regulate_temperature(X) : target(Y) & (Z = X - Y) & (Z >= -0.5) & (Z <= 0.5) <-

 .print("Temperature is ", X, ": it's ok.").

-!regulate_temperature(X) <- .print("Failed to spray air. Retrying."); !regulate_temperature(X).

https://github.com/pikalab-unibo/ise-lab-code-jason/blob/38c3142f8bcaefee3144a7c0fa8e4160f053b13c/thermostat/src/main/asl/thermostat_agent.asl

Example: thermostat agent’s environment, in Java
public class TemperatureEnvironment extends Environment {

 private static final Random RAND = new Random();

 public static final Literal hotAir = Literal.parseLiteral("spray_air(hot)");

 public static final Literal coldAir = Literal.parseLiteral("spray_air(cold)");

 private double temperature;

 private static final double FAILURE_PROBABILITY = 0.2;

 public boolean executeAction(final String ag, final Structure action) {

 boolean result = true;

 if (RAND.nextDouble() < FAILURE_PROBABILITY) {

 result = false;

 } else if (action.equals(hotAir)) {

 temperature += 0.1;

 } else if (action.equals(coldAir)) {

 temperature -= 0.1;

 }

 return result;

 }

}

https://github.com/pikalab-unibo/ise-lab-code-jason/blob/38c3142f8bcaefee3144a7c0fa8e4160f053b13c/thermostat/src/main/java/env/TemperatureEnvironment.java

Communication in Jason: .send internal action

.send(ReceiverID, ILF, Message [, Answer, Timeout])

● ReceiverID is the name of receiver agent

● ILF is the illocutionary force of the message

● Message is the payload the message

● Answer the answer of an ask message, provided by the receiver

● Timeout is the timeout (in milliseconds) when waiting for an ask answer

Illocutionary what?!
Let S be the sender and R be the receiver of .send(R, ILF, Message), then ILF =

● tell means S intends R to believe Message is true

● untell means S intends R to believe Message is not true

● achieve means S requests R to achieve goal !Message

● unachieve means S requests R to drop the goal !Message

● askOne means S requests R to test ?Message once

● askAll means S requests R to test all answers for ?Message

● tellHow means S transfers plan Message to R

● untellHow means S wants R to forget about the plan named Message

● askHow means S requests R to provide all its plans for goal Message

Complex example: domotic robot

● Example code: here

● How to run:
○ git clone https://github.com/pikalab-unibo/ise-lab-code-jason
○ cd ise-lab-code-jason
○ ./gradlew runDomoticMas

https://github.com/pikalab-unibo/ise-lab-code-jason/tree/master/domotic/src/main/asl
https://github.com/pikalab-unibo/ise-lab-code-jason

Cognitive agents, what is missing?

● In a nutshell: imagination & imitation
○ capability to invent goals

○ capability to generate beliefs

○ capability to figure out which actions are possible

○ capability to learn by observing others

https://apice.unibo.it/xwiki/bin/download/Publication/ImaginationExtraamas2021/extraamas-2021-imagination.pdf

Where are all the agents?

Still a fundamental notion in reinforcement learning

Underlying metaphor in many industrial applications

Microservices are essentially reactive agents

Digital twins? Agents mapping physical entities

One can buy “AI bots” for stock or crypto trading

CI/CD bots for software development automation

Example here:
https://github.com/tuProlog/2p-kt/commits/master

https://github.com/tuProlog/2p-kt/commits/master

