
Programmazione Logica e Rudimenti di Prolog
Advanced School in AI in Emilia Romagna

Roberta Calegari

roberta.calegari@unibo.it

Alma Mater Studiorum – Università di Bologna

24 July 2023

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 1 / 117

Outline

1 Logic Programming Motivation

2 Logic Programming

3 Prolog

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 2 / 117

Logic Programming Motivation

Next in Line. . .

1 Logic Programming Motivation

2 Logic Programming

3 Prolog

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 3 / 117

Logic Programming Motivation Context & Needs

Context: why?

→ AI systems to formalize, scale, and accelerate processes
→ trust these systems

Europe Strategy

Ethics Guidelines for Trustworthy AI (EG-TAI) [European Commission, 2019]

First AI regulation (the “AI Act”, 2021) [Act, 2021]

ensuring that AI systems, introduced on the EU market are trustworthy
creating legal certainty to facilitate investments and innovation in AI

TAI is the basis for the development, deployment and use of AI in Europe

⇒ close the AI “trust gap”

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 4 / 117

Logic Programming Motivation Explainable AI: why?

Explainable AI: why?

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 5 / 117

Logic Programming Motivation Explainable AI: why?

EG-TAI: TAI Requirements

Main pillars
lawfulness ethics robustness

Seven specific requirements – dimensions to be audited – of an AI system:
1 human agency and oversight
2 technical robustness and safety
3 privacy and data governance
4 transparency (traceability, explainability)
5 diversity, non-discrimination and fairness
6 societal and environmental well-being
7 accountability

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 6 / 117

Logic Programming Motivation Explainable AI: why?

Why logic & logic programming?

“What is or can be the added value of logic programming for im-
plementing machine ethics and explainable AI?"

Three main features of LP:

(i) being a declarative paradigm

(ii) working as a tool for knowledge representation

(iii) allowing for different forms of reasoning and inference

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 7 / 117

Logic Programming Motivation Explainable AI: why?

Why logic programming?

LP features
Provability

correctness, completeness, well-founded extension

Explainability

formal methods for argumentation-, justification-, and
counterfactual often based on LP [Saptawijaya and Pereira, 2019]

Expressivity and situatedness

different nuances → extensions [Dyckhoff et al., 1996]

explicit assumptions and exceptions [Borning et al., 1989]

capture the specificities of the context [Calegari et al., 2018b]

Hybridity

integration of diversity [Calegari et al., 2018a]

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 8 / 117

Logic Programming

Next in Line. . .

1 Logic Programming Motivation

2 Logic Programming

3 Prolog

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 9 / 117

Logic Programming

Origins I

Early history [Apt, 2005]

automatic deduction of theorems
first-order logic (FOL) by Frege, Peano and Russell
computation as deduction by Gödel and Herbrand
resolution principle by Robinson [Robinson, 1965], along with unification

The key issue
resolution by Robinson

allowed proof of FOL theorem made it possible to compute with logic
not yet to see logic as a full computational framework

from computable logic to logic as a programming language something
was still missing

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 10 / 117

Logic Programming

Origins II

The procedural interpretation of Horn clauses
by defining logic programs as collections of Horn clauses
by restricting Robinson’s principle accordingly
Kowalski showed how a logical implication could be amenable of both
a declarative and a procedural interpretation [Kowalski, 1974]

thus providing the foundations for a logic programming language
Prolog, by Colmerauer in Marseille, came along in 1973

There is no question that Prolog is essentially a theorem prover
à la Robinson. Our contribution was to transform that theorem
prover into a programming language. [Colmerauer and Roussel, 1996]

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 11 / 117

Logic Programming

Essentials I

Three fundamental features [Apt, 2005]

terms Computing takes place over the domain of all terms defined
over a “universal” alphabet.

mgu Values are assigned to variables by means of
automatically-generated substitutions, called most general
unifiers. These values may contain variables, called logical
variables.

backtracking The control is provided by a single mechanism: automatic
backtracking.

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 12 / 117

Logic Programming

Other Features I

Declarative programming
according to Aristotle, declarative is a sentence that can be said either
true or false [Rijk, 2002]

→ declarative programming means first of all programming through
(true) sentences, which declare what to compute—the meaning
procedural programming is instead programming through operational
statements, which determine how to compute—the method
e.g., in object-oriented languages, classes and interfaces are defined
declaratively, whereas methods are defined procedurally
logic programming is amenable of either a declarative or an operational
interpretation, and the two corresponding semantics match [Kowalski, 1974]

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 13 / 117

Logic Programming

Other Features II

Declarative programming: features and issues [Apt, 2005]

logic programs can be seen as executable specifications
the logic programmer is concerned on what to compute
how to compute (control) is delegated to the underlying (logic
programming) machinery

! sometimes this could lead to inefficiency
logic programming languages can be seen as formalisms for either
executable code or knowledge representation

→ languages for artificial intelligence

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 14 / 117

Logic Programming

Other Features III

Interactive programming
the model behind the notion of computation as deduction natively
supports the idea of writing a logic program, then interact with the
logic machinery by means of multiple queries, or, by asking for
multiple solutions
logic languages intrinsically support the interactive style of
programming and computing

! while this will be evident in the lab session, it should be already clear
how such a feature could be useful in distributed systems, supporting
novel notions such as LPaaS (Logic Programming as a Service)
[Calegari et al., 2018b]

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 15 / 117

Logic Programming

Basic Units of Computation I

Atomic actions [Apt, 2005]

logic programming is a different paradigm for programming languages
since it is ruled by different principles w.r.t. the other sorts of
programming languages

atomic actions are equations between terms
executed by means of the unification process trying to solve them
unification assigns values to variables
values can be arbitrary terms—in fact, there is just one sort of variable,
ranging over the set of all terms

so, in order to understand logic programming as a computational
paradigm, we first need to understand its basic units of computation

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 16 / 117

Logic Programming

Basic Units of Computation II

Terms: Definition
a variable is a term
a functor (or, function symbol) with arity 0 is called a constant, and
is a term
if f is a functor of arity n, and t1, . . . , tn are n terms, then
f (t1, . . . , tn) is a term

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 17 / 117

Logic Programming

Basic Units of Computation III

Terms: Examples
let’s say that X ,Y are variables, a, b constants (or, functors of arity
0), f , g functors of arity 3, 2 respectively. Then

a, b, X , and Y are proper terms
f (a, b, a) and g(X ,Y) are proper terms
f (a,X , g(Y , b)) is a proper term

variables and constant are atomic terms, terms built out of proper
functors are structured terms. Then

a, b, X , and Y are atomic terms
f (a, b, a), g(X ,Y) and f (a,X , g(Y , b)) are structured terms

! in the structured term f (a,X , g(Y , b)), f is the functor symbol of
arity 3, whereas a,X , g(Y , b) are the three subterms

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 18 / 117

Logic Programming

Basic Units of Computation IV

Terms: Remarks
a recursive definition, leading to a recursive data structure—a tree

e.g., structured term f (a,X , g(Y , b)) maps onto tree
f

a X g

Y b

fundamental in mathematical logic, terms are essential in computer
science, too: e.g., they capture both arithmetic expressions and strings
no specific alphabet is assumed—universal alphabet for all terms
no meaning is a a priori attached to symbols, in particular to
functors—e.g., + is just a functor, not associated a priori with the
plus sign of arithmetic

→ no types

Terms: Semantics
? if they have no predefined meaning, no type, how we to represent the
application domain in a logic program?
in principle, every term of a logic program can be associated to an
entity of the domain of discourse through a pre-interpretation
it is a conceptual mapping from the set of all ground terms (terms
without variables) – also called the Herbrand Universe – and the
elements of the domain of discourse
e.g., even though symbol 1 is not a priori associated with its common
arithmetic value, it could be explicitly pre-interpreted as such

Variables
they start working as non initialised—unlike many other language we
know
their value range over the set of all possible terms
since variable are terms, and their values are terms as well, their
assignments are called substitutions

Substitution
substitutions are mapping from variables to their values (terms)

! excluding variables mapped to themselves
variables in a substitution are initialised
substitutions represent a meaningful part of the state of a logic
programming machinery
notation

{X1/t1, . . . ,Xn/tn}
denotes a substitution binding variable Xi to term ti , for 1 ≤ i ≤ n

Evaluation
substitutions can be used for evaluation
the process of evaluation is called an application of a substitution to a
term

each variable in a substitution is replaced by the corresponding term
e.g., applying substitution {X/g(a,Y),Y /b} to term f (a,X , g(Y , b))
results in the term f (a, g(a, b), g(b, b))

Equality, equations, and unifiers
equation between terms is the basic operation in logic programming
notation

t = t ′

denotes the equation making terms t and t ′ equal
a substitution making two terms equal is called unifier
for instance,

given terms g(a,Y) and g(X ,Z), substitutions {X/a,Y /b,Z/b},
{X/a,Y /a,Z/a}, {X/a,Y /Z} are all unifiers for equation
g(a,Y) = g(X ,Z)
given terms g(a,Y) and g(b,Z), no substitution exists that is a unifier
for equation g(a,Y) = g(b,Z)

Unification
in general, in logic programming equation means unification
intuitively, given two well-formed terms, they unify according to the
following simple rules

two (uninstantiated) variables X ,Y unify with substitution X/Y
two constants unify if only if they are the same constant
two structured terms if only if they have the same functor and arity,
and their subterms recursively unify

unification is decidable [Robinson, 1965]

and can be computed using the efficient algorithm by Martelli &
Montanari [Martelli and Montanari, 1982]

Most General Unifier (MGU)
the least constraining unifier is called the most general unifier (MGU)
for instance,

given terms g(a,Y) and g(X ,Z), substitution {X/a,Y /Z} is more
general / less constraining than substitutions {X/a,Y /b,Z/b},
{X/a,Y /a,Z/a}

MGU is essentially the solution to the basic equation of logic
programming

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 19 / 117

Logic Programming

Logic Formulae I

Basic question
since logic programs compute over the truth values of sentences, how
do we write sentences?
we know how to denote the elements of the domain of discourse, not
how to talk about them
sentences, in logic, are typically called propositions

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 20 / 117

Logic Programming

Logic Formulae II

Predicate and atoms
predicates can be used to write propositions in logic programming
if p is a predicate symbol of arity n, t1, . . . , tn are terms, then

p(t1, . . . , tn)

is an atom
atoms represent elementary propositions in logic programming
if A is an atom, then

atoms A is a logic formula, stating that A is true

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 21 / 117

Logic Programming

Logic Formulae III

Negation and literals
negation makes it possible to deal with false propositions
if A is an atom, then

negation ¬A (read: not A) is a logic formula, stating that A is
false

literals A, ¬A are literals

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 22 / 117

Logic Programming

Logic Formulae IV

Logical connectives
literals can be combined through logical connectives to build
articulated logic formulae
if A,B are literals, then
conjunction A ∧ B (read: A and B) is a logic formula, stating that

both A and B are true
disjunction A ∨ B (read: A or B) is a logic formula, stating that

either A or B are true
implication A→ B (read: A implies B) is a logic formula, stating

that if A is true then B is true
equivalence A↔ B (read: A is equivalent to B) is a logic formula,

stating that A is true if and only if B is true

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 23 / 117

Logic Programming

Logic Programs I

Logic clause
a logic clause is a (finite) disjunction of literals [Console et al., 1997]

if A1, . . . ,An,B1 . . . ,Bm are atoms, containing variables X1, . . . ,Xk ,
then

∀X1, . . . ,Xk(A1 ∨ . . . ∨ An ∨ ¬B1 ∨ . . . ∨ ¬Bm)

is a logic clause, which is logically equivalent to
∀X1, . . . ,Xk((A1 ∨ . . . ∨ An)← (B1 ∧ . . . ∧ Bm))

usually written simply as
A1, . . . ,An ← B1, . . . ,Bm

a clausal normal form (CNF) is a conjunction of clauses

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 24 / 117

Logic Programming

Logic Programs II

Definite clauses
a definite clause, has just one positive literal (n = 1)

A← B1, . . . ,Bm

a unitary clause, is a definite clause with no negative literal
(m = 0, n = 1)

A←
a definite goal is a definite clause with no positive literal (n = 0)

← B1, . . . ,Bm

Horn clauses
a Horn clause is either a definite clause or a definite goal (n = 1 or
n = 0)

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 25 / 117

Logic Programming

Logic Programs III

Logic program
in a logic program

a definite clause is called a rule
a unitary clause is a fact
a definite goal is just a goal

a logic program is a CNF of Horn clauses
so, it is a conjunction of rules and facts (and goals)

. . . a logic program is a conjunction of Horn clauses. . . waitbutwhy???

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 26 / 117

Logic Programming

Goals & Proofs I

Resolution principle
Robinson’s resolution principle works for general clauses [Robinson, 1965]

given a CNF H and a formula F , it shows that it is possible to
compute (by contradiction) whether H logically entails F
however, it does not provide a proof strategy for a full-fledged logic
programming language

Kowalski showed that this could be obtained by restricting logic
programs to CNF of Horn clauses, and re-casting Robinson’s principle
accordingly [Kowalski, 1974]

given a CNF H and a formula F , it shows that it is possible to
compute (by contradiction) whether H logically entails F
so-called SLD-resolution principle [Nilsson and Maluszynski, 1995]

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 27 / 117

Logic Programming

Goals & Proofs II

Declarative vs. procedural interpretation
a definite clause A← B1, . . . ,Bm is amenable of either a declarative
or a procedural interpretation
declarative interpretation A is true if B1, . . . ,Bm are true
procedural interpretation to prove A, prove B1, . . . ,Bm

the two interpretations coincide [Kowalski, 1974]

! logic programming languages such as Prolog are the only ones for
which this property holds [Metakides and Nerode, 1996]

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 28 / 117

Logic Programming

Goals & Proofs III

Proving goals
Robinson’s principle proceed by contradiction, trying to prove a
formula F false against CNF H, succeeding if this fails

technically, proving that H ∪ ¬F is not satisfiable
proving an atom G in logic programming amounts at proving ¬G
against logic program P

technically, proving goal ← G on P

computation in logic programming proceeds by proving goals
! resolution leads to backward chaining—from goal back to axioms

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 29 / 117

Logic Programming

Goals & Proofs IV

SLD resolution informally
to prove a goal G w.r.t. program P, the resolution principle for logic
programming proceeds according to the procedural interpretation
so, first we look for one clause A← B1, . . . ,Bn in P whose head A unifies
with G

if the most general unifier of G and A is θ (mgu(G ,A) = θ), then the proof
of G succeeds if we can further prove B1θ, . . . ,Bnθ—where Biθ represents
the application of the mgu θ to Bi

! the application of θ to clause A← B1, . . . ,Bn specialises the clause to the
specific atom we need to proof—that is, our current goal

! resolution proceed recursively with the proof of subgoals B1θ, . . . ,Bnθ

→ in general, the computational state of the SLD resolution include a (possibly
empty) conjunction of atom (goals) G1, . . . ,Gn to be proven—the current
goal of the proof

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 30 / 117

Logic Programming

Goals & Proofs V

SLD Resolution: how it ends—if it does
when the current goal is empty, the proof (called SLD derivation) ends
as a successful one—SLD refutation
when the current goal is not empty, a selection rule R is used to select
the subgoal to prove (one if the execution is sequential)
if the selected goal matches no head of the clauses in the program, the
proof fails
if the current goal never gets emptied, but there is always a clause
whose head matches the selected subgoal, the SLD derivation does
not terminate

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 31 / 117

Logic Programming

Goals & Proofs VI

SLD resolution: inference rule
← A1, . . . ,Ai−1,Ai ,Ai+1, . . . ,Am B0 ← B1, . . . , ,Bn

← (A1, . . . ,Ai−1,B1, . . . , ,Bn,Ai+1, . . . ,Am)θ

A1, . . . ,Am are atomic formulas
← A1, . . . ,Am is the list / set / conjunction of the subgoals to prove

B0 ← B1, . . . , ,Bn is a definite clause in program P (n ≥ 0)
suitably renamed (that is, with new and uniques variable names) to
avoid name clashes

there is an Ai unifying with B0 such that mgu(Ai ,B0) = θ

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 32 / 117

Logic Programming

Goals & Proofs VII

Non-determinism of SLD resolution
or more than one clause could unify (through its head) with our current goal:

we could choose either one of them for the resolution step
and more than one goal could be subject to proof at the same time (as for

B1θ, . . . ,Bnθ): we could proceed by choosing either one of them—through a
selection rule
the choice do not affect correctness of the resolution, so we could choose
non-deterministically

! how to exploit either or-nondeterminism or and-nondeterminism, or both,
determines how the automatic resolution process explores the proof tree

! also, different computational models (sequential, parallel, concurrent) could
be exploited to explore the proof tree—e.g., more clauses with a unifying
head could be used for goal proof at the same time, either parallel or
concurrently

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 33 / 117

Logic Programming

An Example I

A simple logic program
parent(joey , luca)
parent(joey , simone)
parent(lino, joey)
parent(mirella, joey)

grandparent(X ,Z)← parent(X ,Y), parent(Y ,Z)

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 34 / 117

Logic Programming

An Example II

Declarative interpretation
four facts are expressed by means of predicate parent/2

four propositions that are considered true with no need of proof—our
axioms
a possible interpretation is that, e.g., joey is a parent of luca—just one
of the many, even though the most intuitive for English speakers

one rule is expressed by means of predicate grandparent/2
since it is the short form for

∀X ,Y ,Z , grandparent(X ,Z)← parent(X ,Y), parent(Y ,Z)
it means that formula grandparent(X ,Z) holds if both parent(X ,Y)
and parent(Y ,Z) are true, whatever the values of X ,Y ,Z
so, it can be used to prove the truth of, e.g., formula
grandparent(lino, luca) since both parent(joey , luca) and
parent(lino, joey) are true since they are facts in the logic program
independently of the possible interpretations

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 35 / 117

Logic Programming

An Example III

Procedural interpretation
two procedure are defined: parent/2 and grandparent/2
two (procedure) calls can be executed correspondingly—goals of the
form

← parent(?, ?)
← grandparent(?, ?)

with any sort of term in the place of the ?

for instance, ← grandparent(lino, luca)

to compute parent/2 we can use the four facts, non-deterministically
to compute grandparent/2 we can use the rule, first matching the rule
head, then proceeding by calling the two subprocedures, via the two
subgoals of the form parent/2

for instance, to compute ← grandparent(lino, luca) we will compute
subgoals ← parent(lino,Y) and ← parent(Y , luca)

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 36 / 117

Logic Programming

An Example IV

Possible goals
grandparent(lino, luca) succeeds—one refutation, no computed substitution

grandparent(lino, joey) fails—no refutations

grandparent(lino,X) succeeds twice—two refutations, two different computed
substitutions

X/luca
X/simone

grandparent(X , simone) succeeds twice—two refutations, two different computed
substitutions

X/lino
X/mirella

grandparent(X ,Y) succeeds four times—four refutations, four different computed
substitutions

X/lino, Y /luca
X/lino, Y /simone
X/mirella, Y /luca
X/mirella, Y /simone

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 37 / 117

Logic Programming

An Example: Remarks

Remarks
From the example we get some early hints about some benefits of logic
programming

multiple uses of the single program
the simple program above can be used to test the family relations
between known people, or, to compute them
mostly, input / output parameters needs not to be defined a priori

knowledge-based programming
arbitrarily complex relations expressed as FOL facts represent the core
of a logic program
knowledge representation is straightforward in the logic programming
formalism—with FOL

language for rule-based systems
classical AI, such as expert systems [Buchanan and Shortliffe, 1984]

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 38 / 117

Logic Programming

SLD Resolution Principle – Example I

A theory (in implication form)

parent(abraham, isaac).

parent(isaac , jacob).

parent(sarah, isaac).

parent(jacob, joseph).

parent(jacob, dan).

parent(jacob, dinah).

male(abraham).

male(isaac).

male(jacob).

male(joseph).

male(dan).

son(X ,Y)⇐ parent(Y ,X) ∧male(X).

⇐ son(S , jacob).

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 39 / 117

Logic Programming

SLD Resolution Principle – Example I

The same theory (in disjunctive form)

parent(abraham, isaac).

parent(isaac , jacob).

parent(sarah, isaac).

parent(jacob, joseph).

parent(jacob, dan).

parent(jacob, dinah).

male(abraham).

male(isaac).

male(jacob).

male(joseph).

male(dan).

son(X ,Y) ∨ ¬parent(Y ,X) ∨ ¬male(X).

¬son(S , jacob).

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 40 / 117

Logic Programming

SLD Resolution Principle – Example II

Figure: Proof tree exploration subtended by the query ⇐ son(S , jacob).

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 41 / 117

Logic Programming

About the Proof Tree Exploration I

SL(D) is a non-deterministic algorithm
ie at any given step, several choices may be taken

aka different paths may be explored

No prescription concerning which literals should be simplified first
aka which rule to try first when multiple ones could apply?

Possible ways to explore the proof tree:
backward chaining (a.k.a. goal-directed) — start from a goal and try

to solve any sub-goal implying it, recursively
forward chaining — start from theory and try to infer anything that

can be inferred from it

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 42 / 117

Logic Programming

About the Proof Tree Exploration II

Possible search strategies to explore the proof tree:
depth first — explore most recent goals first

breadth first — explore most recent goals last
...

Relevant properties a given search strategy should have:
soundness — any solution found by the strategy is correct

completeness — the strategy enumerates all correct solution

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 43 / 117

Logic Programming

Proof Tree Exploration – Example

path(X, Y)

edge(A, B)
edge(1, 2)

edge(1, 4)

edge(2, 5)

edge(4, 3)

edge(4, 5)

edge(5, 3)

edge(A, C), path(C, B)

path(C, B)edge(A, C)

edge(1, 2), path(2, B)

path(2, B)edge(1, 2)

edge(1, 4), path(4, B)

edge(1, 4) path(4, B)

edge(4, 3), path(3, B)

edge(4, 3) path(3, B)

edge(2, 5), path(5, B)

edge(2, 5) path(5, B)

edge(5, 3), path(5, B)

path(5, B)edge(5, 3)

edge(4, 5), path(5, B)

edge(4, 5) path(5, B)...

...

...

...

...

...

...

Legend

4 5

3

2path(A, B) :- edge(A, B).
path(A, B) :- edge(A, C), path(C, B).

edge(1, 2).
edge(1, 4).
edge(2, 5).
edge(4, 3).
edge(4, 5).
edge(5, 3).

?- path(X, Y).

1

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 44 / 117

Logic Programming

Proof Tree Exploration – Example (depth-first)

path(X, Y)

edge(A, B)
edge(1, 2)

edge(1, 4)

edge(2, 5)

edge(4, 3)

edge(4, 5)

edge(5, 3)

edge(A, C), path(C, B)

path(C, B)edge(A, C)

edge(1, 2), path(2, B)

path(2, B)edge(1, 2)

edge(1, 4), path(4, B)

edge(1, 4) path(4, B)

edge(4, 3), path(3, B)

edge(4, 3) path(3, B)

edge(2, 5), path(5, B)

edge(2, 5) path(5, B)

edge(5, 3), path(5, B)

path(5, B)edge(5, 3)

edge(4, 5), path(5, B)

edge(4, 5) path(5, B)...

...

...

...

...

...

...

Legend

4 5

3

2path(A, B) :- edge(A, B).
path(A, B) :- edge(A, C), path(C, B).

edge(1, 2).
edge(1, 4).
edge(2, 5).
edge(4, 3).
edge(4, 5).
edge(5, 3).

?- path(X, Y).

1

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 45 / 117

Logic Programming

Proof Tree Exploration – Example (breadth-first)

path(X, Y)

edge(A, B)
edge(1, 2)

edge(1, 4)

edge(2, 5)

edge(4, 3)

edge(4, 5)

edge(5, 3)

edge(A, C), path(C, B)

path(C, B)edge(A, C)

edge(1, 2), path(2, B)

path(2, B)edge(1, 2)

edge(1, 4), path(4, B)

edge(1, 4) path(4, B)

edge(4, 3), path(3, B)

edge(4, 3) path(3, B)

edge(2, 5), path(5, B)

edge(2, 5) path(5, B)

edge(5, 3), path(5, B)

path(5, B)edge(5, 3)

edge(4, 5), path(5, B)

edge(4, 5) path(5, B)...

...

...

...

...

...

...

Legend

4 5

3

2path(A, B) :- edge(A, B).
path(A, B) :- edge(A, C), path(C, B).

edge(1, 2).
edge(1, 4).
edge(2, 5).
edge(4, 3).
edge(4, 5).
edge(5, 3).

?- path(X, Y).

1

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 46 / 117

Logic Programming

Prolog’s Proof Tree Exploration Strategy

Goal-directed, depth-first, sequential exploration strategy
may get stuck in recursive definitions

Goal-directed → procedural interpretation of Prolog

Depth-first ≈ left-most goal first, top-most rule first

Backtracking → sequential exploration
concurrent implementations may get rid of backtracking

Support for side-effects during resolution
eg edits to the knowledge base (a.k.a. assertions and retractions)
eg manipulation of exploration procedure (e.g. cut)
eg I/O facilities via streams (a.k.a. sources and sinks)

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 47 / 117

Logic Programming

Logic & Logic Programming: Overall Picture

logic axioms

no interpretation interpretation

syntax
(symbols)

semantics
(meanings)

theorem proof logic entailment

soundness

completeness

axiomatic-deductive theories

automatic theorem proof

resolution for
general clauses

SLD resolution
for Horn clauses logic programming

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 48 / 117

Prolog

Next in Line. . .

1 Logic Programming Motivation

2 Logic Programming

3 Prolog

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 49 / 117

Prolog

Prolog examples: facts, atom & predicate I

Imagine we want to encode characters of Homer’s Iliad and Odyssey.
→ This translates into Prolog facts ended with a period

c h a r a c t e r (priam , i l i a d) .
c h a r a c t e r (hecuba , i l i a d) .
c h a r a c t e r (a c h i l l e s , i l i a d) .
c h a r a c t e r (agamemnon , i l i a d) .
c h a r a c t e r (p a t r o c l u s , i l i a d) .
c h a r a c t e r (hec to r , i l i a d) .
c h a r a c t e r (andromache , i l i a d) .
c h a r a c t e r (rhe sus , i l i a d) .
c h a r a c t e r (u l y s s e s , i l i a d) .
c h a r a c t e r (menelaus , i l i a d) .
c h a r a c t e r (he l en , i l i a d) .

c h a r a c t e r (u l y s s e s , ody s s ey) .
c h a r a c t e r (pene lope , ody s s ey) .
c h a r a c t e r (te lemachus , ody s s ey) .
c h a r a c t e r (l a e r t e s , ody s s ey) .
c h a r a c t e r (ne s to r , ody s s ey) .
c h a r a c t e r (menelaus , ody s s ey) .
c h a r a c t e r (he l en , ody s s ey) .
c h a r a c t e r (hermione , ody s s ey) .

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 50 / 117

Prolog

Prolog examples: facts, atom & predicate II

Fact
Facts are statements that describe object properties or relations between
objects.

Knowledge
Such a collection of facts, and later, of rules, makes up a database. It
transcribes the knowledge of a particular situation into a logical format.
Adding more facts to the database, we express other properties

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 51 / 117

Prolog

Prolog examples: facts, atom & predicate III

such as the gender of characters:

% Male c h a r a c t e r s
male (pr iam) .
male (a c h i l l e s) .
male (agamemnon) .
male (p a t r o c l u s) .
male (h e c t o r) .
male (r h e s u s) .
male (u l y s s e s) .
male (mene laus) .
male (t e l emachus) .
male (l a e r t e s) .
male (n e s t o r) .

% Female c h a r a c t e r s
f ema l e (hecuba) .
f ema l e (andromache) .
f ema l e (h e l e n) .
f ema l e (pene l ope) .

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 52 / 117

Prolog

Prolog examples: facts, atom & predicate IV

or relationships between characters such as parentage:

% Fathe r s
f a t h e r (priam , h e c t o r) .
f a t h e r (l a e r t e s , u l y s s e s) .
f a t h e r (a t r eu s , mene laus) .
f a t h e r (menelaus , hermione) .
f a t h e r (u l y s s e s , t e l emachus) .

% Mothers
mother (hecuba , h e c t o r) .
mother (pene lope , t e l emachus) .
mother (he l en , hermione) .

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 53 / 117

Prolog

Prolog examples: facts, atom & predicate V

Finally, if we want to describe kings of some cities and their parties, this
would be done as:

k ing (u l y s s e s , i t ha ca , achaean) .
k i ng (menelaus , spa r t a , achaean) .
k i ng (ne s to r , py l o s , achaean) .
k i ng (agamemnon , argos , achaean) .
k i ng (priam , t roy , t r o j a n) .
k i ng (rhe sus , th race , t r o j a n) .

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 54 / 117

Prolog

Prolog examples: facts, atom & predicate VI

General form of a Prolog fact

relation(object1, object2, ..., objectn).

Symbols or names representing objects → ulysses or penelope: atoms

Atoms
strings of letters, digits, underscores begin with a lowercase letter
can also be a string beginning with an uppercase letter or including
white spaces, but it must be enclosed between quotes → ‘Ulysses’
or ‘Pallas Athena’ are legal atoms

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 55 / 117

Prolog

Prolog examples: facts, atom & predicate VII

Predicate
name of the symbolic relation is the predicate,
the objects object1, object2, ..., objectn involved in the relation are the
arguments
the number n of the arguments is the arity
Traditionally, a Prolog predicate is indicated by its name and arity

predicate/arity
→ e.g., character/2, king/3

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 56 / 117

Prolog

Prolog examples: terms I

Terms
all forms of data are called terms
constants, i.e., atoms or numbers are terms
facts, like king(menelaus, sparta, achaean), are a compound
term or a structure, that is, a term composed of other terms (called
subterms)

→ arguments of this compound term are constants
→ can also be other compound terms, as in character(priam, iliad,

king(troy, trojan)) where the arguments of the predicate
character/3 are two atoms and a compound term

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 57 / 117

Prolog

Prolog examples: tree of terms

use trees to represent compound terms

nodes of the tree are equivalent to the functors of a term

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 58 / 117

Prolog

Prolog examples: tree of terms

use trees to represent compound terms
nodes of the tree are equivalent to the functors of a term

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 58 / 117

Prolog

Prolog examples: compound terms

Compound Term
functor – the name of the relation – and arguments
leftmost functor of a term is the principal functor
same principal functor with a different arity corresponds to different
predicates: character/3 is thus different from character/2

constant is a special case of compound term with no arguments and
an arity of 0 (can be referred to as abc/0)

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 59 / 117

Prolog

Prolog examples: query I

Query
request to prove or retrieve information from the knowledge base
Prolog answers yes if it can prove it, that is, here if the fact is in the
database, or no if it cannot: if the fact is absent (case of asking for a
fact tu be proven)
question Is Ulysses a male?

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 60 / 117

Prolog

Prolog examples: query II

?− male (pene l ope) .
f a l s e .

expressions male(ulysses) or male(penelope) are goals to prove

some questions require more goals, such as Is Menelaus a male and is
he the king of Sparta and an Achaean?

?− male (mene laus) , k i ng (menelaus , spa r t a , achaean) .
t r u e .

where “,” is the conjunction operator → indicates that Prolog has to
prove both goals

compound queries: conjunction of two or more goals
?- G1, G2, G3,..., Gn.

Prolog proves that all the goals G1...Gn are true

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 61 / 117

Prolog

Prolog examples: logical variables I

Logical variables
begin with an uppercase letter, for example, X, Xyz, or an underscore
stand for any term: constants, compound terms, and other variables
term containing variables such as character(X, Y) can unify with a
compatible fact, such as character(penelope, odyssey), with the
substitutions X = penelope and Y = odyssey

Prolog resolution algorithm searches terms in the database that unify
with it → substitutes the variables to the matching arguments
question What are the characters of the Odyssey?

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 62 / 117

Prolog

Prolog examples: logical variables II

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 63 / 117

Prolog

Prolog examples: logical variables III

question What is the city and the party of king Menelaus?

?− k ing (menelaus , X, Y) .
X = spa r ta , Y = achaean

?− c h a r a c t e r (menelaus , X, k i ng (Y, Z)) .
X = i l i a d , Y = spa r ta , Z = achaean

?− c h a r a c t e r (menelaus , X, Y) .
X = i l i a d , Y = k ing (spa r ta , achaean)

multiple solutions → Prolog considers the first fact to match the
query in the knowledg

type “;" to get the next answers until there is no more solution

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 64 / 117

Prolog

Prolog examples: logical variables IV

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 65 / 117

Prolog

Prolog examples: shared variables I

Shared variables
goals in a conjunctive query can share variables
constrain arguments of different goals to have the same value
question Is the king of Ithaca also a father?
conjunction of two goals king(X, ithaca, Y) and father(X, Z),
with X shared between the goals

?− k ing (X, i t haca , Y) , f a t h e r (X, Z) .
X = u l y s s e s , Y = achaean , Z = te l emachus

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 66 / 117

Prolog

Prolog examples: shared variables II

not interested in the name of the child although Prolog responds with
Z = telemachus.

can indicate we do not need to know the values of Y and Z using
anonymous variables

?− k ing (X, i t haca , _) , f a t h e r (X, _) .
X = u l y s s e s

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 67 / 117

Prolog

Prolog examples: rules I

Rules
enable to derive a new property or relation from a set of existing ones
a term called the head or consequent followed by symbol :- (read if)
and a conjunction of goals called antecedent or body

HEAD : −G1,G2,G3, ...Gn.

the head is true if the body is true
variables are shared between the body and the head

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 68 / 117

Prolog

Prolog examples: rules II

son (X, Y) :− f a t h e r (Y, X) , male (X) .
son (X, Y) :− mother (Y, X) , male (X) .

?− son (te lemachus , Y) .
Y = u l y s s e s ;
Y = pene l ope ;

Rules
Flexible way to deduce new information from a set of facts.

The parent/2 predicate is another example of a family relationship that is
easy to define using rules. Somebody is a parent if s/he is either a mother
or a father:

pa r en t (X, Y) :− mother (X, Y) .
pa r en t (X, Y) :− f a t h e r (X, Y) .

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 69 / 117

Prolog

Prolog examples: rules III

Rules can call other rules as with grandparent/2

Z is an intermediate variable shared between goals. → enables to find
the link between the grandparent and the grandchild: a mother or a
father

g randpa r en t (X, Y) :− pa r en t (X, Z) , pa r en t (Z , Y) .

generalize the grandparent/2 predicate and write ancestor/2

two rules, one of them being recursive

an c e s t o r (X, Y) :− pa r en t (X, Y) .
a n c e s t o r (X, Y) :− pa r en t (X, Z) , a n c e s t o r (Z , Y) .

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 70 / 117

Prolog

Prolog examples: rules IV

recursion pattern is quite common for Prolog rules

one or more rules express a general case using recursion

another set of rules or facts describes simpler conditions without
recursion → correspond to boundary cases and enable the recursion to
terminate

Prolog clauses
Facts and rules are also called clauses

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 71 / 117

Prolog

Prolog Program

Prolog program
program a sequence of Prolog clauses

interpreted as a conjunction of clauses
logic theory constituting a logic theory made of Horn clauses written

according the Prolog syntax

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 72 / 117

Prolog

Prolog Execution I

Aim of a Prolog computation
given a Prolog program P and the goal ?- p(t1,t2,...,tm) (also
called query)
if X1,X2,...,Xn are the variables in terms t1,t2,...,tm
the meaning of the goal is to query P and find whether there are some
values for X1,X2,...,Xn that make p(t1,t2,...,tm) true

→ thus, the aim of the Prolog computation is to find a substitution
σ =X1/s1,X2/s2,...,Xn/sn such that P � p(t1, t2, . . . , tm)σ

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 73 / 117

Prolog

Prolog Execution II

Prolog search strategy
as a logic programming language, Prolog adopts SLD resolution
as a search strategy, Prolog applies resolution in a strictly linear
fashion

goals are replaced left-to-right, sequentially
clauses are considered in top-to-bottom order
subgoals are considered immediately once set up

→ resulting in a depth-first search strategy

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 74 / 117

Prolog

Prolog Execution III

Prolog backtracking
in order to achieve completeness, Prolog saves choicepoints for any
possible alternative still to be explored
and goes back to the nearest choice point available in case of failure
exploiting automatic backtracking

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 75 / 117

Prolog

Example 1: The parent.pl Knowledge Base I

parent(joey,luca).
parent(joey,simone).
parent(lino,joey).
parent(mirella,joey).

A logic theory
a simple logic program
with four ground facts
representing one sort of relation between elements of the domain of
discourse

? is there anything we can do with this program?
?? can we compute anything?

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 76 / 117

Prolog

Example 1: The parent.pl Knowledge Base II

Constants & predicates
joey, luca, simone, lino and mirella are constant used in the
program as ground terms to denote the element of the domain
parent is the predicate used in the program to talk about the domain
of discourse—parent/2 says that parent is the predicate symbol
with arity 2

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 77 / 117

Prolog

Example 1: The parent.pl Knowledge Base III

Goals
since the only predicate in the program is parent/2, we cannot prove
anything else, in principle—except for tautologies, or built-in Prolog
predicates
possible goals

1 :- parent(joey,luca).
2 :- parent(joey,lino).
3 :- parent(joey,X).
4 :- parent(X,joey).
5 :- parent(X,Y).

Let us try the above queries in tuProlog

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 78 / 117

http://tuprolog.unibo.it

Prolog

tuProlog in Short I

What is tuProlog?
tuProlog is a light-weight Prolog system for distributed applications
and infrastructures [Denti et al., 2001]

intentionally designed around a minimal core
to be either statically or dynamically configured by loading/unloading
libraries of predicates
tuProlog natively supports multi-paradigm programming [Denti et al., 2005],
providing a clean, seamless integration model between Prolog and
mainstream object-oriented languages

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 79 / 117

Prolog

tuProlog in Short II

Where is tuProlog?
UniBo http://tuprolog.unibo.it

Documentation http://pika-lab.gitlab.io/tuprolog/2p-in-kotlin/

Playground https://pika-lab.gitlab.io/tuprolog/2p-kt-web/

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 80 / 117

http://tuprolog.unibo.it
http://pika-lab.gitlab.io/tuprolog/2p-in-kotlin/
https://pika-lab.gitlab.io/tuprolog/2p-kt-web/

Prolog

tuProlog in Short III

What to download?
From https://github.com/tuProlog/2p-kt/releases/tag/0.15.2

v. 0.15.0

ide-distro https://github.com/tuProlog/2p-kt/releases/download/0.15.2/
2p-ide-0.15.2-redist.jar

distro https://github.com/tuProlog/2p-kt/releases/download/0.15.2/
2p-repl-0.15.2-redist.jar

guide https:
//pika-lab.gitlab.io/tuprolog/2p-in-kotlin/wiki/Users%20Guide/

Let us try the above queries in tuProlog

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 81 / 117

https://github.com/tuProlog/2p-kt/releases/tag/0.15.2
https://github.com/tuProlog/2p-kt/releases/download/0.15.2/2p-ide-0.15.2-redist.jar
https://github.com/tuProlog/2p-kt/releases/download/0.15.2/2p-ide-0.15.2-redist.jar
https://github.com/tuProlog/2p-kt/releases/download/0.15.2/2p-repl-0.15.2-redist.jar
https://github.com/tuProlog/2p-kt/releases/download/0.15.2/2p-repl-0.15.2-redist.jar
https://pika-lab.gitlab.io/tuprolog/2p-in-kotlin/wiki/Users%20Guide/
https://pika-lab.gitlab.io/tuprolog/2p-in-kotlin/wiki/Users%20Guide/
http://tuprolog.unibo.it

Prolog

Prolog Interactive Programming in tuProlog I

tuProlog Playground
learning environment
no need to install software
limited functionalities

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 82 / 117

Prolog

Prolog Interactive Programming in tuProlog II

set a simple thoery
parent(joey,luca).
parent(joey,simone).
parent(lino,joey).
parent(mirella,joey).

then try the following queries:
1 ?- parent(joey,luca).
2 ?- parent(joey,lino).
3 ?- parent(joey,X).
4 ?- parent(X,joey).
5 ?- parent(X,Y).

and see what happens, by responding with
〈next〉 to have more answers
X to delete the query’s answers

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 83 / 117

Prolog

Prolog Interactive Programming in tuProlog III

Remarks on interaction
1 success
2 failure
3 computed substitution
4 unification
5 backtracking
all no input / output parameters: no direction required for arguments in

principle thanks to unification

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 84 / 117

Prolog

Example 2: grandparent.pl I

Adding a rule
add the rule

grandparent(X,Z) :- parent(X,Y), parent(Y,Z).
to the knowledge base
now the logic program is a collection of facts and rules

! it is a so-called universal rule

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 85 / 117

Prolog

Example 2: grandparent.pl II

Test the program
now try the following queries:

1 ?- grandparent(lino,luca).
2 ?- grandparent(lino,joey).
3 ?- grandparent(joey,X).
4 ?- grandparent(lino,X).
5 ?- grandparent(X,Y).

and discuss all the results

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 86 / 117

Prolog

Example 3: sibling.pl I

Adding another rule
add the rule

sibling(Y,Z) :- parent(X,Y), parent(X,Z), Y\=Z.
to the previous logic theory
all the previous theorems are true: all previous computations are the
same
just adding new theorems based on a new rule

! operator \=/2 represent an explicit computation over terms
succeeding when the two arguments are terms that do not unify
all other computations over terms till now were implicitly driven by
goal unification

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 87 / 117

Prolog

Example 3: sibling.pl II

Test the program
now try the following queries:

1 ?- sibling(simone,luca).
2 ?- sibling(lino,joey).
3 ?- sibling(luca,X).
4 ?- sibling(lino,X).
5 ?- sibling(X,Y).

and discuss all the results

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 88 / 117

Prolog

Exercise 1 I

For below english sentences write applicable Prolog facts, rules & goals.
1 Maria reads logic programming book by author Peter Lucas.
2 Anyone likes shopping if she is a girl.
3 Who likes shopping?
4 Kirke hates any city if it is big and crowdy.

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 89 / 117

Prolog

Exercise 1 II

1 Maria reads logic programming book by author Peter Lucas.
read(maria, book(author(‘Peter’, ‘Lucas’), lp)).

2 Anyone likes shopping if she is a girl.
like(shopping, X) :- girl(X).

3 Who likes shopping?
?- like(shopping, X).

4 Kirke hates any city if it is big and crowdy.
hate(X, kirke) :- city(X), big(X), crowdy(X).

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 90 / 117

Prolog

Exercise 2 I

Assume given a set of facts of the form father(name1,name2) (name1 is
the father of name2).

f a t h e r (j u l i a n , bob) .
f a t h e r (j u l i a n , c h r i s t o f e r) .
f a t h e r (bob , dav i d) .
f a t h e r (bob , e v e l i n e) .
f a t h e r (c h r i s t o f e r , f e l i x) .

Define predicate brother(X,Y) which holds iff X and Y are brothers

Define predicate cousin(X,Y) which holds iff X and Y are cousins

Define predicate grandson(X,Y) which holds iff X is a grandson of Y

Define predicate descendent(X,Y) which holds iff X is a descendents
of Y

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 91 / 117

Prolog

Exercise 2 II

Define a predicate brother(X,Y) which holds iff X and Y are brothers

brother(X,Y) :- father(Z,X), father(Z,Y), not(X=Y).

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 92 / 117

Prolog

Exercise 2 III

Define predicate cousin(X,Y) which holds iff X and Y are cousins

cousin(X,Y) :- father(Z,X), father(W,Y), brother(Z,W).

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 93 / 117

Prolog

Exercise 2 IV

Define predicate grandson(X,Y) which holds iff X is a grandson of Y

grandson(X,Y) :- father(Z,X), father(Y,Z).

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 94 / 117

Prolog

Exercise 2 V

Define predicate descendent(X,Y) which holds iff X is a descendents
of Y

descendent(X,Y) :- father(Y,X).

descendent(X,Y) :- father(Z,X), descendent(Z,Y).

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 95 / 117

Prolog

Exercise 3 I

A Simple Thought (Basic Inference)
People wish to live in peace. Men, women and children are people. I am a
woman (or a man). Therefore I wish to live in peace.

1 Use Prolog to prove this statement!

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 96 / 117

Prolog

Exercise 3 II

wish_to_l ive_in_peace (X) :− peop l e (X) .
p eop l e (X) :− man(X) .
p eop l e (X) :− woman(X) .
p eop l e (X) :− c h i l d (X) .
woman(me) .

Goal to prove:

?-wish_to_live_in_peace(me). ==> true

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 97 / 117

Prolog

Lists in Prolog I

Prolog lists
Lists are data structures essential to many programs. A Prolog list is a
sequence of an arbitrary number of terms separated by commas and
enclosed within square brackets.

For example:

[a] is a list made of an atom

[a, b] is a list made of two atoms

[a, X, father(X, telemachus)] is a list made of an atom, a
variable, and a compound term

[[a, b], [[[father(X, telemachus)]]]] is a list made of two
sublists

[] is the atom representing the empty list

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 98 / 117

Prolog

Lists in Prolog II

Lists in general
list are defined via two constructors
nil the empty list, containing no elements

cons the constructor cons, taking an element H and a list T , and generating
the list cons(H,T)

e.g. cons(a, cons(b, cons(c , nil))) would represent list a, b, c
typical recursive data structures
used to represent sequences of any sort

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 99 / 117

Prolog

Lists in Prolog III

Prolog lists
compound terms and the square bracketed notation is only a shortcut
→ list functor is a dot: ./2
in Prolog, list are defined via two analogous constructors
[] represents the empty list, containing no elements—a constant
. stands for cons, taking an element H and a list T, and generating the

list .(H,T)—a functor of arity 2
Prolog sequence notation simplifies writing lists

.(H,T) can be written as [H|T]

.(H,.(H’,T’)) can be written as [H,H’|T’]
there, empty list can be omitted

e.g. [a,b,c] would represent list a, b, c in Prolog, where
a is the head of the list
[b,c] is the tail of the list
mgu([a, b, c], [H|T]) = {H/a, T/[b, c]}

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 100 / 117

Prolog

Computing with Lists I

Recursion
being recursive data structures, lists are typically handled by recursive
rules
which incidentally is also the only way to handle repeated operations
over sequences in Prolog, where there is nothing like a cycle
programming construct

Recursion scheme in Prolog
since Prolog search strategy is depth-first
in particular, with clauses used orderly, top-down
termination is handled with a fact, typically coming before the
recursive rule
as already seen in the cases of num/1 and plus/3 above

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 101 / 117

Prolog

Typical Example: member I

member/2
Checking whether the first argument is a term that is a member of the list
in the second argument

member(X,[X|Xs]).
member(X,[Y|Ys]) :- member(X,Ys).

goals
1 ?- member(b,[a,b,c])
2 ?- member(X,[a,b,c]).
3 ?- member(g(X),[f(a),g(b),f(c),g(d)]).
4 ?- member(z,[X|T]).

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 102 / 117

Prolog

Typical Example: member II

remarks
search strategy: left to right through the list
devising out all the members of the list
conditional membership—given a certain computed substitution
generation of lists

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 103 / 117

Prolog Cuts, Negation, and Related Predicates

Prolog cut predicate I

Cut predicate “!”
device to prune some backtracking alternatives
→ the right rule has been found, no further attempts must be made
→ avoid unnecessary computations
modifies the way Prolog explores goals and enables a programmer to
control the execution of programs
when executed in the body of a clause, the cut always succeeds and
removes backtracking points set before it in the current clause

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 104 / 117

Prolog Cuts, Negation, and Related Predicates

Prolog cut predicate II

Let us suppose that a predicate P consists of three clauses:

P : −A1, ...,Ai , !,Ai+1...,An.

P : −B1, ...,Bm.

P : −C1, ...,Cp.

Executing the cut in the first clause has the following consequences:

1 all other clauses of the predicate below the clause containing the cut are pruned →
the two remaining clauses of P will not be tried

2 all the goals to the left of the cut are also pruned → A1, ...,Ai will no longer be
tried

3 however, it will be possible to backtrack on goals to the right of the cut

P : −A1, ...,Ai , !,Ai+1...,An.

P : −B1, ...,Bm.

P : −C1, ...,Cp.

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 105 / 117

Prolog Cuts, Negation, and Related Predicates

Prolog cut predicate III

Cut to express determinism
Deterministic predicates always produce a definite solution; it is not
necessary then to maintain backtracking possibilities.

A simple example of it is given by the minimum of two numbers:

minimum(X, Y, X) :− X < Y.
minimum(X, Y, Y) :− X >= Y.

Once the comparison is done, there is no means to backtrack because both
clauses are mutually exclusive. This can be expressed by adding two cuts:

minimum(X, Y, X) :− X < Y, ! .
minimum(X, Y, Y) :− X >= Y, ! .

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 106 / 117

Prolog Cuts, Negation, and Related Predicates

Prolog cut predicate IV

Some programmers would rewrite minimum/3 using a single cut:

minimum(X, Y, X) :− X < Y, ! .
minimum(X, Y, Y) .

once Prolog has compared X and Y in the first clause, it is not
necessary to compare them again in the second one.
latter program may be more efficient in terms of speed, BUT it is
obscure
first version cuts respect the logical meaning of the program and do
not impair its legibility

→ green cuts
second predicate is to avoid writing a condition explicitly: error-prone

→ red cuts
Sometimes red cuts are crucial to a program but when overused, they are a
bad programming practice.
Calegari (Università di Bologna) Logica & Prolog 24 July 2023 107 / 117

Prolog Cuts, Negation, and Related Predicates

Negation I

Negation as failure
A logic program contains no negative information, only queries that can be
proven or not. The Prolog built-in negation corresponds to a query failure:
the program cannot prove the query.

negation symbol “\+”
If G succeeds then \+ G fails
If G fails then \+ G succeeds

The Prolog negation is defined using a cut:
\+ (P) :- P, !, fail.
\+ (P) :- true.
where fail/0 is a built-in predicate that always fails

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 108 / 117

Prolog Cuts, Negation, and Related Predicates

Negation II

Most of the time, it is preferable to ensure that a negated goal is ground:
all its variables are instantiated. Let us illustrate it with the somewhat odd
rule:

mother (X, Y) :− \+ male (X) , c h i l d (Y, X) .

and facts:

c h i l d (te lemachus , pene l ope) .
male (u l y s s e s) .
male (t e l emachus) .

query ?- mother(X, Y).
fails because the subgoal male(X) is not ground and unifies with the fact
male(ulysses).

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 109 / 117

Prolog Cuts, Negation, and Related Predicates

Negation III

If the subgoals are inverted:

mother (X, Y) :− c h i l d (Y, X) , \+ male (X) .

query ?- mother(X, Y).
succeeds. Because the term child(Y, X) unifies with the substitution X =
penelope and Y = telemachus, and since male(penelope) is not in the kb,
the goal succeeds.

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 110 / 117

Prolog Out of Reach

Missing

Many interesting things still missing
that are relevant for Prolog programming

operator definition
conditionals
closed world assumption (CWA)
arithmetic
meta programming

and many more
! however, this is not a Prolog course
and we already discussed whatever could be useful for our purposes

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 111 / 117

Bibliography

References I

[Act, 2021] Act, A. I. (2021).
Proposal for a regulation of the european parliament and the council laying down harmonised
rules on artificial intelligence (artificial intelligence act) and amending certain union legislative
acts.
EUR-Lex-52021PC0206.

[Apt, 2005] Apt, K. R. (2005).
The logic programming paradigm and Prolog.
In Mitchell, J. C., editor, Concepts in Programming Languages, chapter 15, pages 475–508.
Cambridge University Press, Cambridge, UK
http://www.cambridge.org/academic/subjects/computer-science/programming-languages-and-applied-logic/

concepts-programming-languages?format=AR.

[Borning et al., 1989] Borning, A., Maher, M. J., Martindale, A., and Wilson, M. (1989).
Constraint hierarchies and logic programming.
In Levi, G. and Martelli, M., editors, Sixth International Conference on Logic Programming,
volume 89, pages 149–164, Lisbon, Portugal. MIT Press.

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 112 / 117

http://www.cambridge.org/academic/subjects/computer-science/programming-languages-and-applied-logic/concepts-programming-languages?format=AR
http://www.cambridge.org/academic/subjects/computer-science/programming-languages-and-applied-logic/concepts-programming-languages?format=AR

Bibliography

References II

[Buchanan and Shortliffe, 1984] Buchanan, B. G. and Shortliffe, E. H. (1984).
Rule Based Expert Systems: The MYCIN Experiments of the Stanford Heuristic
Programming Project.
The Addison-Wesley Series in Artificial Intelligence. Addison-Wesley Longman Publishing Co.,
Inc.
http://tocs.ulb.tu-darmstadt.de/31349005.pdf.

[Calegari et al., 2018a] Calegari, R., Denti, E., Dovier, A., and Omicini, A. (2018a).
Extending logic programming with labelled variables: Model and semantics.
Fundamenta Informaticae, 161(1-2):53–74.
Special Issue on the 31th Italian Conference on Computational Logic: CILC 2016
DOI:10.3233/FI-2018-1695.

[Calegari et al., 2018b] Calegari, R., Denti, E., Mariani, S., and Omicini, A. (2018b).
Logic programming as a service.
Theory and Practice of Logic Programming, 18(5-6):846–873.
Special Issue “Past and Present (and Future) of Parallel and Distributed Computation in
(Constraint) Logic Programming”
DOI:10.1017/S1471068418000364.

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 113 / 117

http://tocs.ulb.tu-darmstadt.de/31349005.pdf
http://dx.doi.org/10.3233/FI-2018-1695
http://dx.doi.org/10.1017/S1471068418000364

Bibliography

References III

[Colmerauer and Roussel, 1996] Colmerauer, A. and Roussel, P. (1996).
The birth of Prolog.
In Bergin Jr., T. J. and Gibson Jr., R. G., editors, History of programming languages—II,
volume II, pages 331–367. ACM, New York, NY, USA
DOI:10.1145/234286.1057820.

[Console et al., 1997] Console, L., Lamma, E., Mello, P., and Milano, M. (1997).
Programmazione logica e Prolog.
UTET Libreria
http://www.utetuniversita.it/catalogo/scienze/programmazione-logica-e-prolog-1824.

[Denti et al., 2001] Denti, E., Omicini, A., and Ricci, A. (2001).
tuProlog: A light-weight Prolog for Internet applications and infrastructures.
In Ramakrishnan, I., editor, Practical Aspects of Declarative Languages, volume 1990 of
Lecture Notes in Computer Science, pages 184–198. Springer Berlin Heidelberg.
3rd International Symposium (PADL 2001), Las Vegas, NV, USA, 11–12 March 2001.
Proceedings
DOI:10.1007/3-540-45241-913.

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 114 / 117

http://dx.doi.org/10.1145/234286.1057820
http://www.utetuniversita.it/catalogo/scienze/programmazione-logica-e-prolog-1824
http://dx.doi.org/10.1007/3-540-45241-9_13

Bibliography

References IV

[Denti et al., 2005] Denti, E., Omicini, A., and Ricci, A. (2005).
Multi-paradigm Java-Prolog integration in tuProlog.
Science of Computer Programming, 57(2):217–250
DOI:doi:10.1016/j.scico.2005.02.001.

[Dyckhoff et al., 1996] Dyckhoff, R., Herre, H., and Schroeder-Heister, P., editors (1996).
Extensions of Logic Programming, 5th International Workshop, ELP’96, volume 1050 of
Lecture Notes in Computer Science, Leipzig, Germany. Springer
DOI:10.1007/3-540-60983-0.

[European Commission, 2019] European Commission (2019).
Ethics guidelines for trustworthy AI.
Publications Office
DOI:doi/10.2759/177365.

[Kowalski, 1974] Kowalski, R. A. (1974).
Predicate logic as programming language.
In Information Processing 74 – Proceedings of the 1974 IFIP Congress, pages 569–574.
North-Holland Publishing Company
http://dblp.uni-trier.de/rec/html/conf/ifip/Kowalski74.

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 115 / 117

http://dx.doi.org/doi:10.1016/j.scico.2005.02.001
http://dx.doi.org/10.1007/3-540-60983-0
http://dx.doi.org/doi/10.2759/177365
http://dblp.uni-trier.de/rec/html/conf/ifip/Kowalski74

Bibliography

References V

[Martelli and Montanari, 1982] Martelli, A. and Montanari, U. (1982).
An efficient unification algorithm.
ACM Transactions on Programming Languages and Systems, 4(2):258–282
DOI:10.1145/357162.357169.

[Metakides and Nerode, 1996] Metakides, G. and Nerode, A. (1996).
Principles of Logic and Logic Programming, volume 13 of Studies in Computer Science and
Artificial Intelligence.
Elsevier
http://www.sciencedirect.com/science/bookseries/09243542/13.

[Nilsson and Maluszynski, 1995] Nilsson, U. and Maluszynski, J. (1995).
Logic, Programming and Prolog.
John Wiley & Sons, Inc., New York, NY, USA.

[Rijk, 2002] Rijk, L. M. D. (2002).
Aristotle: Semantics and Ontology. Volume I: General Introduction. The Works on Logic,
volume 91 of Philosophia Antiqua.
Brill Academic Publishers.

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 116 / 117

http://dx.doi.org/10.1145/357162.357169
http://www.sciencedirect.com/science/bookseries/09243542/13

Bibliography

References VI

[Robinson, 1965] Robinson, J. A. (1965).
A machine-oriented logic based on the resolution principle.
Journal of the ACM, 12(1):23–41
DOI:10.1145/321250.321253.

[Saptawijaya and Pereira, 2019] Saptawijaya, A. and Pereira, L. M. (2019).
From logic programming to machine ethics.
In Bendel, O., editor, Handbuch Maschinenethik, pages 209–227. Springer VS, Wiesbaden
DOI:10.1007/978-3-658-17483-5_14.

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 117 / 117

http://dx.doi.org/10.1145/321250.321253
http://dx.doi.org/10.1007/978-3-658-17483-5{\char 95}14

Programmazione Logica e Rudimenti di Prolog
Advanced School in AI in Emilia Romagna

Roberta Calegari

roberta.calegari@unibo.it

Alma Mater Studiorum – Università di Bologna

24 July 2023

Calegari (Università di Bologna) Logica & Prolog 24 July 2023 118 / 117

	Outline
	Logic Programming Motivation
	Context & Needs
	Explainable AI: why?

	Logic Programming
	Prolog
	Cuts, Negation, and Related Predicates
	Out of Reach

	Bibliography
	

