Programmazione Logica e Rudimenti di Prolog

Advanced School in Al in Emilia Romagna

Roberta Calegari

roberta.calegari@unibo.it

Alma Mater Studiorum — Universita di Bologna

24 July 2023

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 1/117

@ Logic Programming Motivation

© Logic Programming

© Prolog

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 2/117

Logic Programming Motivation

Next in Line. ..

@ Logic Programming Motivation

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 3/117

S lsls
Context: why?

— Al systems to formalize, scale, and accelerate processes

— trust these systems

Europe Strategy

@ Ethics Guidelines for Trustworthy Al (EG-TAI)
@ First Al regulation (the "Al Act”, 2021)

e ensuring that Al systems, introduced on the EU market are trustworthy
e creating legal certainty to facilitate investments and innovation in Al

@ TAl is the basis for the development, deployment and use of Al in Europe

= close the Al “trust gap”

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 4/117

S
Explainable Al: why?

THIS 15 YOUR MPCHIE LEARNNG SYSTETT?
paiosonts oeeT YUPL YoU POUR THE DATA NTO THIS BG
Yoo ARE PILE OF LINEAR ALGEBRA, THEN (OLLECT
A ige L THE ANSLIERS ON FE OTFER SDE.
awr et] LHAT F HE ANBLERS ARE LRONG? |
JUST STR THE PILE NTL
K ’ HEY STRT LODKNG RGHT
4
(oren Fobmany

Publications Office seara
of the European Union =

o e

N
ADVANCING TRUSTWORTHY Al

ADVANCING TRUSTWORTHY Al

Ethics guidelines for trustworthy A1

Calegari

Universita di Bologna) Logica & Prolog 24 July 2023 5/117

L
EG-TAI: TAI Requirements

Main pillars
o lawfulness @ ethics @ robustness

\)
|

Seven specific requirements — dimensions to be audited — of an Al system:
human agency and oversight

technical robustness and safety

privacy and data governance

transparency (traceability, explainability)

diversity, non-discrimination and fairness

societal and environmental well-being

accountability

Q000000

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 6/117

L
Why logic & logic programming?

“What is or can be the added value of logic programming for im-
plementing machine ethics and explainable Al?" J

Three main features of LP:
(i) being a declarative paradigm
(ii) working as a tool for knowledge representation

(iii) allowing for different forms of reasoning and inference

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 7/117

L
Why logic programming?

Provability
@ correctness, completeness, well-founded extension
Explainability

@ formal methods for argumentation-, justification-, and
counterfactual often based on LP

Expressivity and situatedness

@ different nuances — extensions
@ explicit assumptions and exceptions
@ capture the specificities of the context

Hybridity

@ integration of diversity

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 8 /117

Logic Programming

Next in Line. ..

© Logic Programming

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 9/117

Origins |

Early history Aet 20051

@ automatic deduction of theorems

e first-order logic (FOL) by Frege, Peano and Russell
@ computation as deduction by Godel and Herbrand
°

resolution principle by Robinson , along with unification

The key issue

@ resolution by Robinson

o allowed proof of FOL theorem made it possible to compute with logic
e not yet to see logic as a full computational framework

@ from computable logic to logic as a programming language something
was still missing

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 10 /117

Logic Programming

Origins I

The procedural interpretation of Horn clauses

@ by defining logic programs as collections of Horn clauses

@ by restricting Robinson’s principle accordingly

o Kowalski showed how a logical implication could be amenable of both
a declarative and a procedural interpretation

@ thus providing the foundations for a logic programming language

@ Prolog, by Colmerauer in Marseille, came along in 1973

There is no question that Prolog is essentially a theorem prover
a la Robinson. Qur contribution was to transform that theorem
prover into a programming language.

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 11 /117

Logic Programming

Essentials |

Three fundamental features Art 20051

terms Computing takes place over the domain of all terms defined
over a “universal” alphabet.
mgu Values are assigned to variables by means of

automatically-generated substitutions, called most general
unifiers. These values may contain variables, called logical
variables.

backtracking T he control is provided by a single mechanism: automatic
backtracking.

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 12 /117

Logic Programming

Other Features |

Declarative programming

@ according to Aristotle, declarative is a sentence that can be said either
true or false

— declarative programming means first of all programming through
(true) sentences, which declare what to compute—the meaning

@ procedural programming is instead programming through operational
statements, which determine how to compute—the method

@ e.g., in object-oriented languages, classes and interfaces are defined
declaratively, whereas methods are defined procedurally

@ logic programming is amenable of either a declarative or an operational
interpretation, and the two corresponding semantics match

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 13 /117

Logic Programming

Other Features I

Declarative programming: features and issues APt 200

o logic programs can be seen as executable specifications

o the logic programmer is concerned on what to compute
e how to compute (control) is delegated to the underlying (logic
programming) machinery

| sometimes this could lead to inefficiency

o logic programming languages can be seen as formalisms for either
executable code or knowledge representation

— languages for artificial intelligence

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 14 /117

Logic Programming

Other Features Il

Interactive programming

@ the model behind the notion of computation as deduction natively
supports the idea of writing a logic program, then interact with the
logic machinery by means of multiple queries, or, by asking for
multiple solutions

@ logic languages intrinsically support the interactive style of
programming and computing

I while this will be evident in the lab session, it should be already clear
how such a feature could be useful in distributed systems, supporting
novel notions such as LPaaS (Logic Programming as a Service)

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 15 /117

Logic Programming

Basic Units of Computation |

Atomic actions [Apt: 2009]

@ logic programming is a different paradigm for programming languages
@ since it is ruled by different principles w.r.t. the other sorts of
programming languages
e atomic actions are equations between terms
executed by means of the unification process trying to solve them
o unification assigns values to variables
e values can be arbitrary terms—in fact, there is just one sort of variable,
ranging over the set of all terms

@ so, in order to understand logic programming as a computational
paradigm, we first need to understand its basic units of computation

.

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 16 /117

Logic Programming

Basic Units of Computation Il

Terms: Definition

@ a variable is a term

@ a functor (or, function symbol) with arity O is called a constant, and
is a term

o if f is a functor of arity n, and t1,...,t, are n terms, then
f(ty,...,ty) is a term

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 17 /117

Logic Programming

Basic Units of Computation Il

Terms: Examples

@ let's say that X, Y are variables, a, b constants (or, functors of arity
0), f, g functors of arity 3,2 respectively. Then
e a, b, X, and Y are proper terms
e f(a,b,a) and g(X,Y) are proper terms
e f(a,X,g(Y,b)) is a proper term
@ variables and constant are atomic terms, terms built out of proper
functors are structured terms. Then
e a, b, X, and Y are atomic terms
e f(a,b,a), g(X,Y) and f(a,X,g(Y,b)) are structured terms
I in the structured term f(a, X, g(Y, b)), f is the functor symbol of
arity 3, whereas a, X, g(Y, b) are the three subterms

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 18 /117

Logic Programming
Basic Units of Computation IV

Terms: Remarks

@ a recursive definition, leading to a recursive data structure—a tree
e e.g., structured term f(a, X, g(Y, b)) maps onto tree

f
a X g

Y b
o fundamental in mathematical logic, terms are essential in computer
science, too: e.g., they capture both arithmetic expressions and strings
@ no specific alphabet is assumed—universal alphabet for all terms
@ no meaning is a a priori attached to symbols, in particular to

functors—e.g., + is just a functor, not associated a priori with the
plus sign of arithmetic

— no types

TAavmec: CAammAantinca

versita di Bologna) Logica & Prolog

24 July 2023 19 /117

Logic Programming

Logic Formulae |

@ since logic programs compute over the truth values of sentences, how
do we write sentences?

@ we know how to denote the elements of the domain of discourse, not
how to talk about them

@ sentences, in logic, are typically called propositions

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 20/117

Logic Programming

Logic Formulae Il

Predicate and atoms

@ predicates can be used to write propositions in logic programming
e if pis a predicate symbol of arity n, t1,...,t, are terms, then
p(ti, ..., tn)
is an atom
@ atoms represent elementary propositions in logic programming

o if Ais an atom, then

atoms A is a logic formula, stating that A is true

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 21 /117

Logic Programming

Logic Formulae Il

Negation and literals

@ negation makes it possible to deal with false propositions
@ if Ais an atom, then

negation —A (read: not A) is a logic formula, stating that A is
false
literals A, —A are literals

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 22 /117

Logic Programming

Logic Formulae IV

Logical connectives

@ literals can be combined through logical connectives to build
articulated logic formulae
o if A, B are literals, then
conjunction AA B (read: A and B) is a logic formula, stating that
both A and B are true
disjunction AV B (read: A or B) is a logic formula, stating that
either A or B are true
implication A — B (read: A implies B) is a logic formula, stating
that if A is true then B is true
equivalence A <> B (read: A is equivalent to B) is a logic formula,
stating that A is true if and only if B is true

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 23 /117

Logic Programming

Logic Programs |

Logic clause

@ a logic clause is a (finite) disjunction of literals

o if Ay,..., A, Br..., By are atoms, containing variables Xy, ..., X,
then

VX1, .., Xk(ALV ... VA, V=B V...V =Bp)
is a logic clause, which is logically equivalent to
VX1, o Xk((A V... VA, < (BiA ... A Bp))
usually written simply as
A, ..., A < By,...,Bn

@ a clausal normal form (CNF) is a conjunction of clauses

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 24 /117

Logic Programming

Logic Programs Il

Definite clauses

@ a definite clause, has just one positive literal (n = 1)

A« Bi,...,Bm
@ a unitary clause, is a definite clause with no negative literal
(m=0,n=1)
A<+

@ a definite goal is a definite clause with no positive literal (n = 0)

~ By,....Bn

v

Horn clauses

@ a Horn clause is either a definite clause or a definite goal (n =1 or
n=0)

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 25 /117

Logic Programming

Logic Programs Il

Logic program

@ in a logic program
e a definite clause is called a rule
@ a unitary clause is a fact
e a definite goal is just a goal

@ a logic program is a CNF of Horn clauses
e so, it is a conjunction of rules and facts (and goals)

a logic program is a conjunction of Horn clauses. .. waitbutwhy?7?

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 26 /117

Logic Programming

Goals & Proofs |

Resolution principle

@ Robinson's resolution principle works for general clauses
e given a CNF H and a formula F, it shows that it is possible to
compute (by contradiction) whether H logically entails F
o however, it does not provide a proof strategy for a full-fledged logic
programming language
o Kowalski showed that this could be obtained by restricting logic
programs to CNF of Horn clauses, and re-casting Robinson's principle
accordingly
e given a CNF H and a formula F, it shows that it is possible to
compute (by contradiction) whether H logically entails F
o so-called SLD-resolution principle

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 27 /117

Logic Programming

Goals & Proofs Il

Declarative vs. procedural interpretation

@ a definite clause A < By, ..., By is amenable of either a declarative
or a procedural interpretation

declarative interpretation A is true if By, ..., B, are true
procedural interpretation to prove A, prove By, ..., Bn

@ the two interpretations coincide

I logic programming languages such as Prolog are the only ones for
which this property holds

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 28 /117

Logic Programming

Goals & Proofs Il

Proving goals

@ Robinson's principle proceed by contradiction, trying to prove a
formula F false against CNF H, succeeding if this fails

e technically, proving that H U —F is not satisfiable
@ proving an atom G in logic programming amounts at proving =G
against logic program P
e technically, proving goal < G on P
@ computation in logic programming proceeds by proving goals

I resolution leads to backward chaining—from goal back to axioms

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 29 /117

Logic Programming

Goals & Proofs IV

SLD resolution informally

@ to prove a goal G w.r.t. program P, the resolution principle for logic
programming proceeds according to the procedural interpretation

@ so, first we look for one clause A < By, ..., B, in P whose head A unifies
with G

@ if the most general unifier of G and A is 6 (mgu(G, A) = 0), then the proof
of G succeeds if we can further prove B;0, ..., B,0—where B;f represents

the application of the mgu 0 to B;

I the application of 6 to clause A <— By, ..., B, specialises the clause to the
specific atom we need to proof—that is, our current goal

resolution proceed recursively with the proof of subgoals B0, ..., B,0

— in general, the computational state of the SLD resolution include a (possibly
empty) conjunction of atom (goals) Gy, ..., G, to be proven—the current
goal of the proof

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 30/117

Logic Programming

Goals & Proofs V

SLD Resolution: how it ends—if it does

@ when the current goal is empty, the proof (called SLD derivation) ends
as a successful one—SLD refutation

@ when the current goal is not empty, a selection rule R is used to select
the subgoal to prove (one if the execution is sequential)

o if the selected goal matches no head of the clauses in the program, the
proof fails

@ if the current goal never gets emptied, but there is always a clause
whose head matches the selected subgoal, the SLD derivation does
not terminate

m——

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 31/117

Logic Programming

Goals & Proofs VI

SLD resolution: inference rule

<—Al,...,A,'_l,A,',AH_l,...,Am Bo(—Bl,...,,Bn
— (Al,...,A;_l,Bl,.. .,,Bn,AH_l,...,Am)@
@ Ay, ..., A, are atomic formulas
e < Ai,...,An is the list / set / conjunction of the subgoals to prove
@ By« By,...,,B,is a definite clause in program P (n > 0)
o suitably renamed (that is, with new and uniques variable names) to
avoid name clashes
@ there is an A; unifying with By such that mgu(A;, Bp) = 6

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 32/117

Logic Programming

Goals & Proofs VII

Non-determinism of SLD resolution

or more than one clause could unify (through its head) with our current goal:
we could choose either one of them for the resolution step

and more than one goal could be subject to proof at the same time (as for
B0, ..., B,0): we could proceed by choosing either one of them—through a
selection rule

@ the choice do not affect correctness of the resolution, so we could choose
non-deterministically

I how to exploit either or-nondeterminism or and-nondeterminism, or both,
determines how the automatic resolution process explores the proof tree

I' also, different computational models (sequential, parallel, concurrent) could
be exploited to explore the proof tree—e.g., more clauses with a unifying
head could be used for goal proof at the same time, either parallel or
concurrently

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 33/117

Logic Programming

An Example |

A simple logic program
parent(joey, luca)
parent(joey, simone)
parent(lino, joey)
parent(mirella, joey)

grandparent(X, Z) < parent(X,Y), parent(Y,Z)

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 34 /117

Logic Programming

An Example I

Declarative interpretation

o four facts are expressed by means of predicate parent/2
e four propositions that are considered true with no need of proof—our
axioms
e a possible interpretation is that, e.g., joey is a parent of luca—just one
of the many, even though the most intuitive for English speakers
@ one rule is expressed by means of predicate grandparent/2
e since it is the short form for
vX,Y,Z,grandparent(X, Z) < parent(X,Y), parent(Y, Z)
it means that formula grandparent(X, Z) holds if both parent(X, Y)
and parent(Y,Z) are true, whatever the values of X, Y, Z
@ so, it can be used to prove the truth of, e.g., formula
grandparent(lino, luca) since both parent(joey, luca) and
parent(lino, joey) are true since they are facts in the logic program
o independently of the possible interpretations

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 35 /117

Logic Programming

An Example IlI

Procedural interpretation

@ two procedure are defined: parent/2 and grandparent/2

@ two (procedure) calls can be executed correspondingly—goals of the
form

o « parent(?,7)
e < grandparent(?,7)

with any sort of term in the place of the ?
o for instance, < grandparent(lino, luca)

@ to compute parent/2 we can use the four facts, non-deterministically

@ to compute grandparent/2 we can use the rule, first matching the rule
head, then proceeding by calling the two subprocedures, via the two
subgoals of the form parent/2

o for instance, to compute + grandparent(lino, luca) we will compute
subgoals < parent(lino, Y) and < parent(Y, luca)

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 36 /117

Logic Programming

An Example IV

Possible goals

@ grandparent(lino, luca) succeeds—one refutation, no computed substitution
@ grandparent(lino, joey) fails—no refutations

@ grandparent(lino, X) succeeds twice—two refutations, two different computed
substitutions
o X/luca
@ X/simone
@ grandparent(X, simone) succeeds twice—two refutations, two different computed
substitutions
e X/lino
o X/mirella
@ grandparent(X, Y succeeds four times—four refutations, four different computed
substitutions
o X/lino, Y /luca
X/lino, Y /simone
X /mirella, Y /luca
X /mirella, Y /simone

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 37 /117

Logic Programming

An Example: Remarks

From the example we get some early hints about some benefits of logic
programming
@ multiple uses of the single program
o the simple program above can be used to test the family relations
between known people, or, to compute them
e mostly, input / output parameters needs not to be defined a priori
@ knowledge-based programming
o arbitrarily complex relations expressed as FOL facts represent the core
of a logic program
o knowledge representation is straightforward in the logic programming
formalism—with FOL
o language for rule-based systems
o classical Al, such as expert systems [Buchanan and Shortliffe, 1984]

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 38 /117

Logic Programming

SLD Resolution Principle — Example |

A theory (in implication form)

e parent(abraham, isaac). o male(abraham).

o parent(isaac, jacob). e male(isaac).
hyi .

° parent(?ara ,/.saac) o male(jacob).

e parent(jacob, joseph). '

e parent(jacob, dan). o male(joseph).

@ parent(jacob, dinah). e male(dan).

e son(X,Y) < parent(Y,X) A male(X).

e < son(S, jacob).

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 39 /117

Logic Programming

SLD Resolution Principle — Example |

The same theory (in disjunctive form)

e parent(abraham, isaac). o male(abraham).

o parent(isaac, jacob). o male(isaac).
h,i .

° parent(?ara ,/.saac) o male(jacob).

@ parent(jacob, joseph). '

e parent(jacob, dan). © male(joseph).

@ parent(jacob, dinah). e male(dan).

e son(X,Y)V —parent(Y,X)V —male(X).

e —son(S, jacob).

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 40 /117

Logic Programming

SLD Resolution Principle — Example Il

parent(abraham, isaac). son(S, jacob) '

parent(isaac, jacob).

parent(sarah, isaac). %s1 {S=X1,

parent(jacob, joseph). Yl=jacob}

parent(jacob, dan).

parent(jacob, dinah). (: parent(jacob, X1), :J
male(X1)

male(abraham).

male(isaac). %p4 %5 %p6

male(jacob). {X1=josep {Xlizan} {X1=dina

male(joseph). B

male(dan). [:male(joseph)) (:male(dan)) [male(dinah)]

son(X,Y) :- parent(Y,X), %ma {} %ms {}

male(X).
true l false l

?- son(S,jacob). |

S=joseph S=dan

Figure: Proof tree exploration subtended by the query < son(S, jacob).

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 41 /117

About the Proof Tree Exploration |

e SL(D) is a non-deterministic algorithm
ie at any given step, several choices may be taken
aka different paths may be explored

@ No prescription concerning which literals should be simplified first
aka which rule to try first when multiple ones could apply?

@ Possible ways to explore the proof tree:
backward chaining (a.k.a. goal-directed) — start from a goal and try
to solve any sub-goal implying it, recursively
forward chaining — start from theory and try to infer anything that
can be inferred from it

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 42 /117

About the Proof Tree Exploration |l

@ Possible search strategies to explore the proof tree:

depth first — explore most recent goals first
breadth first — explore most recent goals last

@ Relevant properties a given search strategy should have:

soundness — any solution found by the strategy is correct
completeness — the strategy enumerates all correct solution

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 43 /117

Logic Programming

Proof Tree Exploration — Example

Legend

path(A, B) - edge(A,
Petin B g, O pthC B

edge(1, 2)
edge(1, 4.
edgel2. 5)
edgeld, 3.
edgets, 5).
edgels, 3).

7 pathix. .

edge(s 3) pam{s B)

ed e{! 4), palh(4 B)

edge(4, 5), path(5, B)
=dg=(2 5), pam(s B)
edge(4, 3), path(3, B)
5
B

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 44 /117

Logic Programming

Proof Tree Exploration — Example (depth-first)

POA,) ecge, 5.
PathiA B) edge. O pathC,B).

2 pat .

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 45 /117

Logic Programming

Proof Tree Exploration — Example (breadth-first)

Pah(A B):-edgelh 8}
POA B):-edgelA, O PAIC)

edoett, 2.
edger. 4

edge(1, 4), pathid, B)

(S)

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023

46 /117

Prolog's Proof Tree Exploration Strategy

o Goal-directed, depth-first, sequential exploration strategy
e may get stuck in recursive definitions

o Goal-directed — procedural interpretation of Prolog

Depth-first ~ left-most goal first, top-most rule first

Backtracking — sequential exploration
e concurrent implementations may get rid of backtracking

Support for side-effects during resolution

eg edits to the knowledge base (a.k.a. assertions and retractions)
eg manipulation of exploration procedure (e.g. cut)
eg 1/0 facilities via streams (a.k.a. sources and sinks)

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 47 /117

Logic & Logic Programming: Overall Picture

logic axioms

no interpretation interpretation

syntax semantics
(symbols) (meanings)
soundness

theorem proof Q b logic entailment

completeness

axiomatic-deductive theories

automatic theorem proof

resolution for
general clauses

SLD resolution
for Horn clauses

logic programming

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023

48 /117

Next in Line. ..

© Prolog

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 49 /117

Prolog examples: facts, atom & predicate |

Imagine we want to encode characters of Homer's Iliad and Odyssey.
— This translates into Prolog facts ended with a period
character(priam, iliad).
character (hecuba, iliad).
. O character (ulysses , odyssey).
character(achilles , iliad).
Ly character (penelope, odyssey).
character (agamemnon, iliad).
. character (telemachus, odyssey).
character(patroclus, iliad).
L character(laertes, odyssey).
character (hector, iliad).
L character(nestor, odyssey).
character (andromache, iliad)
s character(menelaus, odyssey).
character(rhesus, iliad).
s character (helen, odyssey).
character(ulysses, iliad). .
L character (hermione, odyssey).
character(menelaus, iliad).
character(helen, iliad).

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 50 /117

Prolog examples: facts, atom & predicate Il

Facts are statements that describe object properties or relations between
objects.

Knowledge
Such a collection of facts, and later, of rules, makes up a database. It

transcribes the knowledge of a particular situation into a logical format.
Adding more facts to the database, we express other properties

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 51 /117

Prolog examples: facts, atom & predicate Il

such as the gender of characters:

male (priam).
male(achilles).
male (agamemnon).
male(patroclus).
male(hector).

(
(
(
(
(
male(rhesus).
(
(
(
(
(

female (hecuba).
female (andromache).
female(helen).

el mlyeses). female(penelope).

male(menelaus).
male(telemachus).
male(laertes).
male(nestor).

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023

52 /117

Prolog examples: facts, atom & predicate IV

or relationships between characters such as parentage:

father (priam, hector).
father(laertes, ulysses). mother (hecuba, hector).
father(atreus, menelaus). mother(penelope, telemachus).
father (menelaus, hermione). mother(helen, hermione).
father(ulysses, telemachus).

e o

24 July 2023 53 /117

Prolog examples: facts, atom & predicate V

Finally, if we want to describe kings of some cities and their parties, this

would be done as:

J

king
king
king

(ulysses, ithaca, achaean).
(menelaus, sparta, achaean).
(nestor, pylos, achaean).
king (agamemnon, argos, achaean).
king (priam, troy, trojan).
king(rhesus, thrace, trojan).

Calegari (Universita di Bologna) Logica & Prolog

54 /117

Prolog examples: facts, atom & predicate VI

General form of a Prolog fact

relation(objecty, objecty, ..., object,).

Symbols or names representing objects — ulysses or penelope: atoms

@ strings of letters, digits, underscores begin with a lowercase letter

@ can also be a string beginning with an uppercase letter or including
white spaces, but it must be enclosed between quotes — ‘Ulysses’
or ‘Pallas Athena’ are legal atoms

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 55 /117

Prolog examples: facts, atom & predicate VII

@ name of the symbolic relation is the predicate,

@ the objects objecty, objects, ..., object,, involved in the relation are the
arguments

@ the number n of the arguments is the arity
Traditionally, a Prolog predicate is indicated by its name and arity

predicate/arity
— e.g., character/2, king/3

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 56 /117

Prolog examples: terms |

o all forms of data are called terms
@ constants, i.e., atoms or numbers are terms

o facts, like king(menelaus, sparta, achaean), are a compound
term or a structure, that is, a term composed of other terms (called
subterms)

1

arguments of this compound term are constants

1

can also be other compound terms, as in character(priam, iliad,
king(troy, trojan)) where the arguments of the predicate
character/3 are two atoms and a compound term

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 57 /117

Prolog examples: tree of terms

character (ulysses, odyssey, king(ithaca, achaean))

character
ulysses odyssey king

ithaca achaean

@ nodes of the tree are equivalent to the functors of a term

Prolog examples: tree of terms

character (ulysses, odyssey, king(ithaca, achaean))

ulysses

ithaca achaean

@ use trees to represent compound terms

@ nodes of the tree are equivalent to the functors of a term

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023

58 /117

Prolog examples: compound terms

Compound Term

@ functor — the name of the relation — and arguments
o leftmost functor of a term is the principal functor

@ same principal functor with a different arity corresponds to different
predicates: character/3 is thus different from character/2

@ constant is a special case of compound term with no arguments and
an arity of 0 (can be referred to as abc/0)

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 59 /117

Prolog examples: query |

@ request to prove or retrieve information from the knowledge base

@ Prolog answers yes if it can prove it, that is, here if the fact is in the
database, or no if it cannot: if the fact is absent (case of asking for a
fact tu be proven)

@ question /s Ulysses a male?

Query typed by the user

| 7- male (ulysses). |

true. —

Answer from the Prolog engine

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 60 /117

Prolog examples: query Il

?7— male(penelope).
false.
@ expressions male (ulysses) or male(penelope) are goals to prove

@ some questions require more goals, such as Is Menelaus a male and is
he the king of Sparta and an Achaean?

?7— male(menelaus), king(menelaus, sparta, achaean).
true.

@ where “," is the conjunction operator — indicates that Prolog has to
prove both goals

@ compound queries: conjunction of two or more goals
?- G1, G2, G3,..., Gn.

@ Prolog proves that all the goals G;...G, are true

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 61 /117

Prolog examples: logical variables |

Logical variables

@ begin with an uppercase letter, for example, X, Xyz, or an underscore
@ stand for any term: constants, compound terms, and other variables

@ term containing variables such as character (X, Y) can unify with a
compatible fact, such as character(penelope, odyssey), with the
substitutions X = penelope and Y = odyssey

@ Prolog resolution algorithm searches terms in the database that unify
with it — substitutes the variables to the matching arguments

@ question What are the characters of the Odyssey?

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 62 /117

Prolog examples: logical variables Il

The variable The query

7- character(X, odyssey). |

/ The Prolog answer
X = ulysses

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023

63 /117

Prolog examples: logical variables Ill

@ question What is the city and the party of king Menelaus?

?7— king(menelaus, X, Y).
X = sparta, Y = achaean

?7— character(menelaus, X, king(Y, Z)).
X = iliad , Y = sparta, Z = achaean

?7— character(menelaus, X, Y).
X = iliad , Y = king(sparta, achaean)

@ multiple solutions — Prolog considers the first fact to match the
query in the knowledg

@ type ;" to get the next answers until there is no more solution

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 64 /117

Prolog

Prolog examples: logical variables IV

The variable The query
7- male(X). Prolog answers, unifying X with a value

X = priam|; The user requests more answers, typing a semicolon

"

X = achilles|;

/

Prolog proposes more solutions
Until there are no more matching facts in the database

- e
.

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023

65 /117

Prolog examples: shared variables |

Shared variables

@ goals in a conjunctive query can share variables

@ constrain arguments of different goals to have the same value
@ question /s the king of Ithaca also a father?
o

conjunction of two goals king (X, ithaca, Y) and father(X, Z),
with X shared between the goals

?7— king (X, ithaca, Y), father(X, Z).
X = ulysses, Y = achaean, Z = telemachus

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 66 /117

Prolog examples: shared variables Il

@ not interested in the name of the child although Prolog responds with
Z = telemachus.

@ can indicate we do not need to know the values of Y and Z using
anonymous variables

7— king (X, ithaca,), father(X,).
X = ulysses

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 67 /117

Prolog examples: rules |

Rules

@ enable to derive a new property or relation from a set of existing ones

@ a term called the head or consequent followed by symbol : - (read if)
and a conjunction of goals called antecedent or body

HEAD —Gl, Gg, G3, Gn

@ the head is true if the body is true

@ variables are shared between the body and the head

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 68 /117

Prolog examples: rules Il

son (X, Y) :— father (Y, X), male(X).
son (X, Y) :— mother(Y, X), male(X).
7— son(telemachus, Y).

Y = ulysses;
Y = penelope;

Flexible way to deduce new information from a set of facts.

The parent/2 predicate is another example of a family relationship that is

easy to define using rules. Somebody is a parent if s/he is either a mother
or a father:

parent (X, Y) :— mother(X, Y).
parent(X, Y) :— father(X, Y).

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 69 /117

Prolog examples: rules Ill

@ Rules can call other rules as with grandparent/2

@ Zis an intermediate variable shared between goals. — enables to find
the link between the grandparent and the grandchild: a mother or a
father

grandparent (X, Y) :— parent(X, Z), parent(Z, Y).

@ generalize the grandparent/2 predicate and write ancestor/2

@ two rules, one of them being recursive

ancestor (X, Y) :— parent(X, Y).
ancestor (X, Y) :— parent(X, Z), ancestor(Z, Y).

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 70 /117

Prolog examples: rules IV

@ recursion pattern is quite common for Prolog rules
@ one or more rules express a general case using recursion

@ another set of rules or facts describes simpler conditions without
recursion — correspond to boundary cases and enable the recursion to

terminate

Prolog clauses

Facts and rules are also called clauses

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 71 /117

Prolog Program

Prolog program

program a sequence of Prolog clauses
interpreted as a conjunction of clauses

logic theory constituting a logic theory made of Horn clauses written
according the Prolog syntax

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 72 /117

Prolog Execution |

Aim of a Prolog computation

@ given a Prolog program P and the goal 7- p(t1,t2,...,tm) (also
called query)

o if X1,X2,...,Xn are the variables in terms t1,t2,...,tm
@ the meaning of the goal is to query P and find whether there are some
values for X1,X2,...,Xn that make p(t1,t2,...,tm) true

— thus, the aim of the Prolog computation is to find a substitution
o =X1/s1,X2/s2,...,%Xn/sn such that P F p(t1,t2,...,tm)o

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 73 /117

Prolog Execution |l

Prolog search strategy

@ as a logic programming language, Prolog adopts SLD resolution
@ as a search strategy, Prolog applies resolution in a strictly linear
fashion
e goals are replaced left-to-right, sequentially
e clauses are considered in top-to-bottom order
e subgoals are considered immediately once set up

— resulting in a depth-first search strategy

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 74 /117

Prolog Execution IlI

Prolog backtracking

@ in order to achieve completeness, Prolog saves choicepoints for any
possible alternative still to be explored

@ and goes back to the nearest choice point available in case of failure

@ exploiting automatic backtracking

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 75 /117

Example 1: The parent.pl Knowledge Base |

parent (joey,luca) .
parent (joey,simone) .
parent(lino, joey).
parent (mirella, joey) .

A logic theory

@ a simple logic program

@ with four ground facts

@ representing one sort of relation between elements of the domain of
discourse

? is there anything we can do with this program?

77 can we compute anything?

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 76 /117

Example 1: The parent.pl Knowledge Base

Constants & predicates

@ joey, luca, simone, lino and mirella are constant used in the
program as ground terms to denote the element of the domain

@ parent is the predicate used in the program to talk about the domain
of discourse—parent/2 says that parent is the predicate symbol
with arity 2

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 77 /117

Example 1: The parent.pl Knowledge Base Ill

Goals

@ since the only predicate in the program is parent/2, we cannot prove
anything else, in principle—except for tautologies, or built-in Prolog
predicates

@ possible goals

:- parent(joey,luca).

parent (joey,lino).

parent (joey,X) .

parent (X, joey) .

:- parent(X,Y).

00000

Let us try the above queries in tuProlog

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 78 /117

http://tuprolog.unibo.it

tuProlog in Short |

What is tuProlog?

@ tuProlog is a light-weight Prolog system for distributed applications
and infrastructures

@ intentionally designed around a minimal core

@ to be either statically or dynamically configured by loading/unloading
libraries of predicates

o tuProlog natively supports multi-paradigm programming
providing a clean, seamless integration model between Prolog and
mainstream object-oriented languages

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 79 /117

tuProlog in Short I

Where is tuProlog?

UniBo nttp://tuprolog.unibo.it

Documentation http://pika-lab.gitlab.io/tuprolog/2p-in-kotlin/

Playgrou nd https://pika-lab.gitlab.io/tuprolog/2p-kt-web/

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 80 /117

http://tuprolog.unibo.it
http://pika-lab.gitlab.io/tuprolog/2p-in-kotlin/
https://pika-lab.gitlab.io/tuprolog/2p-kt-web/

tuProlog in Short IlI

What to download?

From https://github.com/tuProlog/2p-kt/releases/tag/0.15.2
v. 0.15.0
ide-distro https://github.com/tuProlog/2p-kt/releases/download/0.15.2/
2p-ide-0.15.2-redist. jar
distro https://github.com/tuProlog/2p-kt/releases/download/0.15.2/
2p-repl-0.15.2-redist. jar
guide https:
//pika-lab.gitlab.io/tuprolog/2p-in-kotlin/wiki/Users%20Guide/

Let us try the above queries in tuProlog

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 81 /117

https://github.com/tuProlog/2p-kt/releases/tag/0.15.2
https://github.com/tuProlog/2p-kt/releases/download/0.15.2/2p-ide-0.15.2-redist.jar
https://github.com/tuProlog/2p-kt/releases/download/0.15.2/2p-ide-0.15.2-redist.jar
https://github.com/tuProlog/2p-kt/releases/download/0.15.2/2p-repl-0.15.2-redist.jar
https://github.com/tuProlog/2p-kt/releases/download/0.15.2/2p-repl-0.15.2-redist.jar
https://pika-lab.gitlab.io/tuprolog/2p-in-kotlin/wiki/Users%20Guide/
https://pika-lab.gitlab.io/tuprolog/2p-in-kotlin/wiki/Users%20Guide/
http://tuprolog.unibo.it

Prolog Interactive Programming in tuProlog |

tuProlog Playground

@ learning environment
@ no need to install software

o limited functionalities

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 82 /117

Prolog Interactive Programming in tuProlog Il

@ set a simple thoery

parent (joey,luca) .
parent (joey,simone) .
parent(lino, joey) .
parent (mirella, joey) .
@ then try the following queries:
7- parent (joey,luca).
?7- parent(joey,lino).
?7- parent(joey,X).
7- parent (X, joey) .
7- parent(X,Y).
and see what happens, by responding with

00000

o (next) to have more answers
o X to delete the query's answers

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 83 /117

Prolog Interactive Programming in tuProlog Il

Remarks on interaction

success
failure
computed substitution

unification

00000

backtracking

O

no input / output parameters: no direction required for arguments in
principle thanks to unification

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 84 /117

Example 2: grandparent.pl |

Adding a rule

@ add the rule
grandparent (X,Z) :- parent(X,Y), parent(Y,Z).
to the knowledge base

@ now the logic program is a collection of facts and rules

| it is a so-called wniversal rule

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 85 /117

Example 2: grandparent.pl Il

Test the program

@ now try the following queries:

o
2]
(8]
o
o

7- grandparent(lino,luca).
7- grandparent(lino, joey).
?7- grandparent (joey,X) .

?7- grandparent(1lino,X).

?7- grandparent (X,Y).

and discuss all the results

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023

86 /117

Example 3: sibling.pl |

Adding another rule

@ add the rule
sibling(Y,Z) :- parent(X,Y), parent(X,Z), Y\=Z.
to the previous logic theory
@ all the previous theorems are true: all previous computations are the
same
@ just adding new theorems based on a new rule
| operator \=/2 represent an explicit computation over terms

e succeeding when the two arguments are terms that do not unify
o all other computations over terms till now were implicitly driven by
goal unification

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 87 /117

Example 3: sibling.pl Il

Test the program

@ now try the following queries:

o
2]
(8]
o
o

sibling(simone,luca).
sibling(lino, joey) .
sibling(luca,X).
sibling(lino,X).
sibling(X,Y).

and discuss all the results

Calegari (Universita di Bologna) Logica & Prolog

24 July 2023 88 /117

Exercise 1 |

For below english sentences write applicable Prolog facts, rules & goals.
© Maria reads logic programming book by author Peter Lucas.
@ Anyone likes shopping if she is a girl.
© Who likes shopping?
Q Kirke hates any city if it is big and crowdy.

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 89 /117

Exercise 1 |l

@ Maria reads logic programming book by author Peter Lucas.
read(maria, book(author(‘Peter’, ‘Lucas’), 1lp)).

@ Anyone likes shopping if she is a girl.
like(shopping, X) :- girl(X).
© Who likes shopping?
?7- like(shopping, X).

Q Kirke hates any city if it is big and crowdy.
hate(X, kirke) :- city(X), big(X), crowdy(X).

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023

90/117

Exercise 2 |

Assume given a set of facts of the form father (namel,name2) (namel is
the father of name2).

father(julian ,bob).
father(julian , christofer).
father (bob, david).
father(bob, eveline).
father(christofer , felix).

Define predicate brother (X,Y) which holds iff X and Y are brothers
Define predicate cousin(X,Y) which holds iff X and Y are cousins

°
°
@ Define predicate grandson(X,Y) which holds iff X is a grandson of Y
°

Define predicate descendent (X,Y) which holds iff X is a descendents
of Y

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 91 /117

Exercise 2 ||

o Define a predicate brother (X,Y) which holds iff X and Y are brothers

brother(X,Y) :- father(Z,X), father(Z,Y), not(X=Y).

brother(X, Y) x

+ brother(bob, christofer)
o X:bob

: christofer
« brother(christofer, bob)
o X: christofer

o Y :bob

« brother(david, eveline)
avi

o Y:eveline

« brother(eveline, david)
X:eveline

o Y:david

* No

24 July 2023 92 /117

Calegari (Universita di Bologna) Logica & Prolog

Exercise 2 IlI

@ Define predicate cousin(X,Y) which holds iff X and Y are cousins

cousin(X,Y) :- father(Z,X), father(W,Y), brother(Z,W).

cousin(X, Y) x

« cousin(david, felix)

o Y felix
« cousin(eveline, felix)
X: eveline

« cousin(felix, david)
o X felix

« cousin(felix, eveline)
:felix
o Y:eveline
* No

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023

93 /117

Exercise 2 IV

@ Define predicate grandson(X,Y) which holds iff X is a grandson of Y

grandson(X,Y)

:- father(Z,X), father(Y,Z).

Calegari (Universita di Bologna)

grandson(X, Y) X

« grandson(david, julian)
o X:davi
o Y:julian

« grandson(eveline, julian)
o X:eveline
o Y:julian

« grandson(felix, julian)
o X:felix
o Y:julian

Logica & Prolog 24 July 2023

94 /117

Exercise 2 V

@ Define predicate descendent (X,Y) which holds iff X is a descendents

of Y
descendent (X,Y) :- father(Y,X).

descendent (X,Y) :- father(Z,X), descendent(Z,Y).

descendent(X, Y) x
« descendent(bob, julian)
o X:bob
« descendent(christofer julian)
X: christofer

julian
« descendent(david, bob)
favi
© Y:bob
« descendent(eveline, bob)
o X:eveline
© ¥:bol
« descendent(felix, christofer)
o X: felix
o Y christofer
« descendent(david,julian)
o X: david
o Y:julian
« descendent(eveline, julian)
o X: eveline
o Y:julian
« descendent(felx,julian)
o X: felix

o ¥:julian
. No

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023

95 /117

Exercise 3 |

A Simple Thought (Basic Inference)

People wish to live in peace. Men, women and children are people. | am a
woman (or a man). Therefore | wish to live in peace.

© Use Prolog to prove this statement!

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 96 /117

Exercise 3 Il

wish _to live in_peace(X) :— people(X).
people(X) :— man(X).

people (X) :— woman(X).

people(X) :— child(X).

woman (me) .

@ Goal to prove:

7-wish_to_live_in_peace(me). ==> true

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 97 /117

Lists in Prolog |

Prolog lists

Lists are data structures essential to many programs. A Prolog list is a
sequence of an arbitrary number of terms separated by commas and
enclosed within square brackets.

For example:

e [a] is a list made of an atom

@ [a, Db] is a list made of two atoms

o [a, X, father(X, telemachus)] is a list made of an atom, a
variable, and a compound term

o [[a, b], [[[father(X, telemachus)]]]1] is a list made of two
sublists

@ [] is the atom representing the empty list

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 98 /117

Lists in Prolog I

Lists in general

@ list are defined via two constructors

nil the empty list, containing no elements
cons the constructor cons, taking an element H and a list T, and generating
the list cons(H, T)

e.g. cons(a, cons(b, cons(c, nil))) would represent list a, b, c
@ typical recursive data structures

@ used to represent sequences of any sort

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 99 /117

Lists in Prolog Il

Prolog lists

@ compound terms and the square bracketed notation is only a shortcut
— list functor is a dot: ./2

@ in Prolog, list are defined via two analogous constructors

[1 represents the empty list, containing no elements—a constant

. stands for cons, taking an element H and a list T, and generating the

list . (H,T)—a functor of arity 2

@ Prolog sequence notation simplifies writing lists

o .(H,T) can be written as [H|T]

o .(H,.(H?,T’)) can be written as [H,H’|T’]

o there, empty list can be omitted

e.g. [a,b,c] would represent list a, b, ¢ in Prolog, where

e a is the head of the list

o [b,c] is the tail of the list

o mgu([a, b, c], [H|T]) = {H/a, T/[b, c]}

o

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 100 /117

Computing with Lists |

Recursion

@ being recursive data structures, lists are typically handled by recursive
rules

@ which incidentally is also the only way to handle repeated operations
over sequences in Prolog, where there is nothing like a cycle
programming construct

v

Recursion scheme in Prolog

@ since Prolog search strategy is depth-first

@ in particular, with clauses used orderly, top-down

e termination is handled with a fact, typically coming before the
recursive rule

@ as already seen in the cases of num/1 and plus/3 above

———

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 101 /117

Typical Example: member |

Checking whether the first argument is a term that is a member of the list
in the second argument

member (X, [X|Xs]).

member (X, [Y|Ys]) :- member(X,Ys).
@ goals
©@ 7- member(b,[a,b,c])
Q@ 7- member(X,[a,b,c]).
© 7- member(g(X),[f(a),g(b),f(c),gld]).
Q@ ?7- member(z, [X|T]).

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 102 /117

Typical Example: member |

@ remarks
e search strategy: left to right through the list
e devising out all the members of the list
e conditional membership—given a certain computed substitution
e generation of lists

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 103 /117

Prolog cut predicate |

@ device to prune some backtracking alternatives

@ — the right rule has been found, no further attempts must be made
@ — avoid unnecessary computations
o

modifies the way Prolog explores goals and enables a programmer to
control the execution of programs

@ when executed in the body of a clause, the cut always succeeds and
removes backtracking points set before it in the current clause

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 104 /117

Prolog cut predicate |l

Let us suppose that a predicate P consists of three clauses:

P:—As, ., Al Aisr..., An.
P:—Bi,.. Bn.
P:—C,...,Cp.
Executing the cut in the first clause has the following consequences:

@ all other clauses of the predicate below the clause containing the cut are pruned —
the two remaining clauses of P will not be tried

@ all the goals to the left of the cut are also pruned — Aq, ..., A; will no longer be
tried
© however, it will be possible to backtrack on goals to the right of the cut

P —Ar—A !, Aitr..., An.

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 105 /117

Cuts, Negation, and Related Predicates
Prolog cut predicate IlI

Cut to express determinism

Deterministic predicates always produce a definite solution; it is not
necessary then to maintain backtracking possibilities.

A simple example of it is given by the minimum of two numbers:

minimum (X, Y, X) (= X < Y.

minimum (X, Y, Y) :(— X >=Y.

Once the comparison is done, there is no means to backtrack because both
clauses are mutually exclusive. This can be expressed by adding two cuts:

minimum (X, Y, X) (= X <Y, I
minimum (X, Y, Y) :(— X>=Y, .

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 106 /117

Cuts, Negation, and Related Predicates
Prolog cut predicate IV

Some programmers would rewrite minimum/3 using a single cut:
minimum (X, Y, X) (= X <Y, .
minimum (X, Y, Y).

@ once Prolog has compared X and Y in the first clause, it is not
necessary to compare them again in the second one.

o latter program may be more efficient in terms of speed, BUT it is
obscure

o first version cuts respect the logical meaning of the program and do
not impair its legibility
— green cuts
@ second predicate is to avoid writing a condition explicitly: error-prone
— red cuts
Sometimes red cuts are crucial to a program but when overused, they are a

bad programming practice.
Logica & Prolog 24 July 2023 107 /117

St i,) (e ey
Negation |

Negation as failure

A logic program contains no negative information, only queries that can be
proven or not. The Prolog built-in negation corresponds to a query failure:
the program cannot prove the query.

@ negation symbol "\ +"
o If G succeeds then \+ G fails
o If G fails then \+ G succeeds

The Prolog negation is defined using a cut:

\+ (P) :- P, !, fail.

\+ (P) :- true.

where fail/0 is a built-in predicate that always fails

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 108 /117

St i,) (e ey
Negation |l

Most of the time, it is preferable to ensure that a negated goal is ground:
all its variables are instantiated. Let us illustrate it with the somewhat odd
rule:

mother (X, Y) :— \+ male(X), child(Y, X).

and facts:

child (telemachus, penelope).
male(ulysses).
male(telemachus).

query ?- mother(X, Y).

fails because the subgoal male(X) is not ground and unifies with the fact
male(ulysses) .

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 109 /117

Negation IlI

If the subgoals are inverted:
mother (X, Y) :— child (Y, X), \+ male(X).

query 7- mother(X, Y).

succeeds. Because the term child(Y, X) unifies with the substitution X =
penelope and Y = telemachus, and since male(penelope) is not in the kb,
the goal succeeds.

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 110 /117

Out of Reach
Missing

Many interesting things still missing

@ that are relevant for Prolog programming
e operator definition
e conditionals
o closed world assumption (CWA)
o arithmetic
e meta programming

@ and many more

I however, this is not a Prolog course

@ and we already discussed whatever could be useful for our purposes

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 111 /117

Bibliography

References |

[Act, 2021] Act, A. I. (2021).

Proposal for a regulation of the european parliament and the council laying down harmonised

rules on artificial intelligence (artificial intelligence act) and amending certain union legislative
acts.

EUR-Lex-52021PC0206.

[Apt, 2005] Apt, K. R. (2005).
The logic programming paradigm and Prolog.

In Mitchell, J. C., editor, Concepts in Programming Languages, chapter 15, pages 475-508.
Cambridge University Press, Cambridge, UK

[Borning et al., 1989] Borning, A., Maher, M. J., Martindale, A., and Wilson, M. (1989).
Constraint hierarchies and logic programming.

In Levi, G. and Martelli, M., editors, Sixth International Conference on Logic Programming,
volume 89, pages 149-164, Lisbon, Portugal. MIT Press.

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 112 /117

http://www.cambridge.org/academic/subjects/computer-science/programming-languages-and-applied-logic/concepts-programming-languages?format=AR
http://www.cambridge.org/academic/subjects/computer-science/programming-languages-and-applied-logic/concepts-programming-languages?format=AR

Bibliography

References |l

[Buchanan and Shortliffe, 1984] Buchanan, B. G. and Shortliffe, E. H. (1984).
Rule Based Expert Systems: The MYCIN Experiments of the Stanford Heuristic
Programming Project.

The Addison-Wesley Series in Artificial Intelligence. Addison-Wesley Longman Publishing Co.,

Inc.

[Calegari et al., 2018a] Calegari, R., Denti, E., Dovier, A., and Omicini, A. (2018a).
Extending logic programming with labelled variables: Model and semantics.
Fundamenta Informaticae, 161(1-2):53-74.

Special Issue on the 31th Italian Conference on Computational Logic: CILC 2016

[Calegari et al., 2018b] Calegari, R., Denti, E., Mariani, S., and Omicini, A. (2018b).
Logic programming as a service.
Theory and Practice of Logic Programming, 18(5-6):846-873.

Special Issue “Past and Present (and Future) of Parallel and Distributed Computation in
(Constraint) Logic Programming”

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 113 /117

http://tocs.ulb.tu-darmstadt.de/31349005.pdf
http://dx.doi.org/10.3233/FI-2018-1695
http://dx.doi.org/10.1017/S1471068418000364

Bibliography

References ||

[Colmerauer and Roussel, 1996] Colmerauer, A. and Roussel, P. (1996).
The birth of Prolog.
In Bergin Jr., T. J. and Gibson Jr., R. G., editors, History of programming languages—II,
volume II, pages 331-367. ACM, New York, NY, USA

[Console et al., 1997] Console, L., Lamma, E., Mello, P., and Milano, M. (1997).
Programmazione logica e Prolog.
UTET Libreria

[Denti et al., 2001] Denti, E., Omicini, A., and Ricci, A. (2001).
tuProlog: A light-weight Prolog for Internet applications and infrastructures.
In Ramakrishnan, |., editor, Practical Aspects of Declarative Languages, volume 1990 of
Lecture Notes in Computer Science, pages 184-198. Springer Berlin Heidelberg.

3rd International Symposium (PADL 2001), Las Vegas, NV, USA, 11-12 March 2001.
Proceedings

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 114 /117

http://dx.doi.org/10.1145/234286.1057820
http://www.utetuniversita.it/catalogo/scienze/programmazione-logica-e-prolog-1824
http://dx.doi.org/10.1007/3-540-45241-9_13

Bibliography

References |V

[Denti et al., 2005] Denti, E., Omicini, A., and Ricci, A. (2005).
Multi-paradigm Java-Prolog integration in tuProlog.
Science of Computer Programming, 57(2):217-250

[Dyckhoff et al., 1996] Dyckhoff, R., Herre, H., and Schroeder-Heister, P., editors (1996).
Extensions of Logic Programming, 5th International Workshop, ELP’96, volume 1050 of
Lecture Notes in Computer Science, Leipzig, Germany. Springer

[European Commission, 2019] European Commission (2019).
Ethics guidelines for trustworthy Al.
Publications Office

[Kowalski, 1974] Kowalski, R. A. (1974).
Predicate logic as programming language.

In Information Processing 74 — Proceedings of the 1974 IFIP Congress, pages 569-574.
North-Holland Publishing Company

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 115 /117

http://dx.doi.org/doi:10.1016/j.scico.2005.02.001
http://dx.doi.org/10.1007/3-540-60983-0
http://dx.doi.org/doi/10.2759/177365
http://dblp.uni-trier.de/rec/html/conf/ifip/Kowalski74

Bibliography

References V

[Martelli and Montanari, 1982] Martelli, A. and Montanari, U. (1982).
An efficient unification algorithm.

ACM Transactions on Programming Languages and Systems, 4(2):258-282

[Metakides and Nerode, 1996] Metakides, G. and Nerode, A. (1996).

Principles of Logic and Logic Programming, volume 13 of Studies in Computer Science and
Artificial Intelligence.

Elsevier

[Nilsson and Maluszynski, 1995] Nilsson, U. and Maluszynski, J. (1995).
Logic, Programming and Prolog.
John Wiley & Sons, Inc., New York, NY, USA.

[Rijk, 2002] Rijk, L. M. D. (2002).

Aristotle: Semantics and Ontology. Volume I: General Introduction. The Works on Logic,
volume 91 of Philosophia Antiqua.
Brill Academic Publishers.

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 116 /117

http://dx.doi.org/10.1145/357162.357169
http://www.sciencedirect.com/science/bookseries/09243542/13

Bibliography

References VI

[Robinson, 1965] Robinson, J. A. (1965).
A machine-oriented logic based on the resolution principle.
Journal of the ACM, 12(1):23-41

[Saptawijaya and Pereira, 2019] Saptawijaya, A. and Pereira, L. M. (2019).
From logic programming to machine ethics.
In Bendel, O., editor, Handbuch Maschinenethik, pages 209-227. Springer VS, Wiesbaden

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 117 /117

http://dx.doi.org/10.1145/321250.321253
http://dx.doi.org/10.1007/978-3-658-17483-5{\char 95}14

Programmazione Logica e Rudimenti di Prolog

Advanced School in Al in Emilia Romagna

Roberta Calegari

roberta.calegari@unibo.it

Alma Mater Studiorum — Universita di Bologna

24 July 2023

Calegari (Universita di Bologna) Logica & Prolog 24 July 2023 118 /117

	Outline
	Logic Programming Motivation
	Context & Needs
	Explainable AI: why?

	Logic Programming
	Prolog
	Cuts, Negation, and Related Predicates
	Out of Reach

	Bibliography
	

