
Programming with Constraints

Roberto Amadini

Advanced School in Artificial Intelligence
Bertinoro (FC), 17-28 luglio 2023



Constraint Programming

• Constraint Programming (CP) is a declarative paradigm to model and solve CSPs and COPs

• Declarative = focus on what to solve, rather than how to do it

“ Constraint Programming represents one of the closest approaches Computer Science has yet 
made to the Holy Grail of programming: the user states the problem, the computer solves it ”

Eugene C. Freuder (1997)
Professor Emeritus, University College Cork



Modelling CP problems

• Converting a real-life problem into a mathematical model that “better abstracts” can be tricky
• It requires expertize, the concept of “best abstraction” is informal and not univocal

• The same problem can have different yet equivalent models
• the same solver can have different performance on equivalent models

• Different solvers can perform differently on the same model
• The user may define a model according to the solver that will solve it
• Portfolio solvers



Encoding CP problems

• Given a mathematical model for a problem, we need to encode it in a language 
understandable by the solver(s) that will solve it

• Officially, no standard language to encode CP problems

• However, one of the most known is called MiniZinc
• https://www.minizinc.org/

• MiniZinc is high-level and solver-independent
• “Model once, solve anywhere”

• Who developes/developed MiniZinc?
• Monash University, CSIRO Data61, University of Melbourne

https://www.minizinc.org/


MiniZinc

• MiniZinc is modelling language, not a solver! It allows the user to specify:

• Parameters
• MiniZinc also provides separation model/data

• Variables of different type, and corresponding domains
• Boolean, integers, floats, set of integers, …

• Constraints over the variables
• Arithmetical, logical, global

• Objective (minimization/maximization)

• ...and much more!



Example: Sudoku



Example: Sudoku



Example: Subset-sum

• subset-sum problem: are there N numbers in a set S adding up to K?



Example: Subset-sum

• subset-sum problem: are there N numbers in a set S adding up to K?

For using global constraints



Example: Subset-sum

• subset-sum problem: are there N numbers in a set S adding up to K?

For using global constraints

Parameters



Example: Subset-sum

• subset-sum problem: are there N numbers in a set S adding up to K?

For using global constraints

Parameters
Instead of N integer variables X1, …, XN 
we use an array X of N integer variables



Example: Subset-sum

• subset-sum problem: are there N numbers in a set S adding up to K?

For using global constraints

Parameters
Instead of N integer variables X1, …, XN 
we use an array X of N integer variables

Global constraints: defined on 
arbitrary number of variables



Example: Subset-sum

• subset-sum problem: are there N numbers in a set S adding up to K?

For using global constraints

Parameters
Instead of N integer variables X1, …, XN 
we use an array X of N integer variables

Global constraints: defined on 
arbitrary number of variables

CSP



Getting started

• Download and Install MiniZinc: https://www.minizinc.org/software.html
• Bundled binary packages recommended

• MiniZinc IDE: Integrated Development Environment to:
• Develop MiniZinc models (editor)
• Compile MiniZinc models into FlatZinc, a low-level language understood by a large range 

of solvers
• Solvers solve the derived FlatZinc, not the MiniZinc model

• Solve a compiled model by one of the integrated solvers
• Chuffed
• Gecode
• Coin-BC
• …

https://www.minizinc.org/software.html


Getting Started

• Now open the MiniZinc IDE. It should appear something like:



MiniZinc IDE

• Exercise: Implement the above models (or other models!) with MiniZinc and solve them
• The FlatZinc compilation is transparent for the user, just pick a solver and click "Run"!

• Use different solvers:
• Chuffed
• COIN-BC
• Gecode
• …

• ...Is the output always the same?



Solving CP problems

• Once a CP model is defined, a constraint solver is used to solve the constraints and (possibly) 
return a solution

• CP solving basically works in two steps:

• Propagation: the domains of the variables are pruned until no more pruning is possible 
(not complete)
• E.g., propagating x < y with D(x) = [1,5], D(y) = [-2,4] results in D(x)←[1,3] and 

D(y)←[2,4]. This in turn may trigger other propagators until a fixpoint is reached

• Search: we “guess” the value of a variable (heuristics) and if we have a failure we 
backtrack, until either all the variables are assigned (we have a solution) or unsatisfiability 
is proven (all the alternatives fail)



Solving CP problems

• A powerful technique for solving (not only) CP problems is called clause learning
• a.k.a. no-goods learning
• Basically, redundant constraints are learned during the solving process to avoid to repeat 

the same "bad choices" during the search process

• Examples of effective CP solvers using clause learning are Chuffed (part of MiniZinc bundle), 
OR-Tools (developed by Google), and Opturion (commercial software)
• https://github.com/chuffed/chuffed
• https://developers.google.com/optimization
• https://www.opturion.com/

• Other well-known CP solvers: Gecode, iZplus, Picat, Choco, etc…
• See MiniZinc Challenge: https://www.minizinc.org/challenge.html

https://github.com/chuffed/chuffed
https://developers.google.com/optimization
https://www.opturion.com/
https://www.minizinc.org/challenge.html


Exercise

• We are master brewers. We bought the right ingredients (Corn, Hop, Malt) and we need to 
decide how many Ales and Beers as possible, given the resources available, to maximize the 
potential profit:

• First define a model for this problem
• Identify variables (decisions), domains (options), constraints (requirement), objective 

function (goal)
• Then implement it and solve it with MiniZinc

• Hint: use solve maximize instead of solve satisfy...


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

