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Resources

An Introduction to Reinforcement Learning , Sutton and Barto,1998
Available online at http://incompleteideas.net/book/the-book-2nd.html

Foundations of Deep Reinforcement Learning: Theory and Practice in Python, Laura
Graesser and Wah Loon Keng, 2020
Deep Mind Lectures:

Introduction to Reinforcement Learning with David Silver:
https://www.deepmind.com/learning-resources/
introduction-to-reinforcement-learning-with-david-silver
Reinforcement Learning Lecture Series: https://www.deepmind.com/
learning-resources/reinforcement-learning-lecture-series-2021
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What is Reinforcement Learning?



What is Reinforcement Learning?
It is related with the concept of intelligence



What is Intelligence?



What is Intelligence?
[..] otherwise called “good sense”, “practical sense”, “initiative”, the faculty of

adapting one’s self to circumstances



What is Intelligence?
Goal-directed adaptive behavior



What is Intelligence?
learning to make decisions to achive goals



Introduction

What is Reinforcement Learning?

Animals learn by interacting with our environment
Babies learn how to communicate by interacting with parents
Dogs learn how to behave by following the owner’s orders
Me learn how to surfing by falling from the surfboard

Difference from supervised learning:
active learning (learn by doing)
sequential interaction
delayed feedback

Learning guided by goal (goal-directed)

Learning without examples  guided by reward signal
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Introduction

Interaction loop

An agent interacts with the environment by perceive an observation and
take an action accordingly which leads to a reward

Goal: maximize the cumulative reward over time
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Introduction

On problem expressiveness: reward hypothesis

Reward hypothesis
Any goal can be formalized as the outcome of maximizing a cumulative rewarda

Reinforcement learning is based on this hypothesis

Ideally, we can formalize any problem as a reinforcement learning problem
ahttp://incompleteideas.net/rlai.cs.ualberta.ca/RLAI/rewardhypothesis.html

Stronger statement: reward is enough
intelligence, and its associated abilities, can be understood as subserving the
maximisation of reward by an agent acting in its environment. a

Really controversial
aDavid Silver et al. “Reward is enough”. In: Artificial Intelligence 299 (Oct. 2021), p. 103535. doi:

10.1016/j.artint.2021.103535. url: https://doi.org/10.1016/j.artint.2021.103535
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Introduction

Examples of Reinforcement Learning problems

Learning how to surf
Managing a portfolio of
cryptocurrencies
Controlling the battery of an electric
car
Playing chessboard
Solving a cubic cube

 Reward: surfing time on the wave

 Reward: money earned

 Reward: battery level at the end of
the day

 Reward: win the game

 Reward: solving time

NB! if the goal is learn via environment interaction, then these are all
reinforcement learning problems, regardless the algorithm involved
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Introduction

Again, What is Reinforcement Learning

There are several reasons why we should learn:
1 Find solutions

A robot that reaches a target
A program that plays chess (really well)

2 Adapt online (dealing with unknowns)
A robot that learns how to walk in a new environment
A program that learns how to play a new game

Reinforcement learning is used in both cases

Episodic vs continuing tasks

Adapting online is more challenging, and it is not just generalization (e.g. supervised
learning)

Is it planning?  No, the model is not known
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Introduction

Motivating real world examples

Robotics, Games, Finance, Healthcare, . . .
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Introduction

ChatGPT 1

1https://openai.com/blog/chatgpt
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Introduction

Learning Plasma Control for Fusion Science 2

2Jonas Degrave et al. “Magnetic control of tokamak plasmas through deep reinforcement learning”. In:
Nature 602.7897 (2022), pp. 414–419
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Formalisation

Reinforcement Learning: core concept

Reinforcement learning formalism includes:
Environment:

Typically stochastic and unknow but stationary (Markov Decision Process)
Environment dynamics (i.e., the model) expressed as: p(s′, r |s, a)  not known by the
agent

Reward signal
Identifies what is good in the environment (the goal)

Agent, which contain:
State
Policy
Value function estimation?
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Formalisation

Environment: Stochasticity

The environment is stochastic if the next state is not fully determined by the
current state and action

But the environment is stationary if the probability distribution of the next state is
the same for all time steps
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Formalisation

Agent and environment

Each time step t:
The agent receives an observation st ∈ S (and a reward rt ∈ R)
Executes an action at ∈ A

The environment
Receives the action at
Emits the observation st+1 and the reward rt+1

The agent-environment interaction can be (i.e., the task):
Episodic: the agent-environment interaction breaks down into episodes (e.g., chess)

A sequence of actions that terminates in a terminal state
Continuing : the agent-environment interaction continues without limit (e.g., robot)
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Formalisation

Agent state

A full episode is a sequence of state-action-reward tuples (called trajectory)
Example: HT = {(s0, a0, r1), (s1, a1, r2), . . . , (sT−1, aT−1, rT )}
Markovian property: the future is independent of the past given the present

Formula: p(st+1|st , at) = p(st+1|Ht , at)
NB!: this means that the state st is a sufficient statistic of the future

The environment state can be either:
Fully observable: the agent knows the full environment state
Partially observable: the agent partially observes environment state

Today we will assume that the state is fully observable and Markovian
Real case scenario: partially observable and non-Markovian

Also in that situation, reinforcement learning algorithms can be used (particularly the
ones based on deep learning)
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Formalisation

Example: Maze

Action: move in one of the four directions (up, down, left, right)

State:???
Reward: ???

Policy: ???
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Formalisation

Example: Maze

Action: move in one of the four directions (up, down, left, right)

State: position in the maze

Reward: ???

Policy: ???
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Formalisation

Rewards

A reward rt is a scalar feedback signal
In chess, rt = 1 if the agent wins, rt = 0 otherwise
In a robot, rt = 1 if the robot reaches the target, rt = 0 otherwise
For a portfolio, rt is the profit

Describes how well the agent is doing at step t (define the goal)

The agent’s sole objective is to maximize the discounted cumulative reward (return)

Gt = rt+1 + γrt+2 + γ2rt+3 + . . .

=
∞∑
k=0

γk rt+k+1

Why discounted?
Immediate rewards can be more important than future rewards

γ ∈ [0, 1] is the discount factor

γ = 0  myopic agent

γ = 1  far-sighted agent
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Formalisation

Example: Maze

Action: move in one of the four directions (up, down, left, right)

State: position in the maze
Reward:

rt = -1 for each step, rt = 0 if the agent reaches the target
rt = 1 if the agent reaches the target, rt = 0 otherwise

Policy: ???
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Formalisation

Agent Policy

The agent’s behaviour is determined by a policy π

A policy is a mapping from state to action
An action is something that affects the state

the action can be either:
Discrete: A = {a1, a2, . . . , an} (e.g., chess)
Continuous: A = Rn (e.g., the torque applied to each joint of a robot)

The policy can be either:
Deterministic: π : S → A
Stochastic: π : S ×A → [0, 1]

The policy is typically represented as a lookup table or a neural network
The policy can be based on an estimation of the value function
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Formalisation

Example: Maze

Action: move in one of the four directions (up, down, left, right)
State: position in the maze
Reward:

rt = -1 for each step, rt = 0 if the agent reaches the target
rt = 1 if the agent reaches the target, rt = 0 otherwise

Policy:
shortest path to the target
random walk
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Formalisation

Value function

The value function vπ(s) gives the long-term value of state s under policy π

The value of a state is the total amount of reward an agent can expect to
accumulate over the future, starting from that state

Formally, it can be expressed as:

vπ(s) = Eπ[Gt |St = s] = Eπ

[
∞∑
k=0

γk rt+k+1|St = s

]

the state-action value function qπ(s, a) gives the long-term value of state-action
pair (s, a) under policy π

Formally, it can be expressed as:

qπ(s, a) = Eπ[Gt |St = s,At = a] = Eπ

[ ∞∑
k=0

γkRt+k+1|St = s,At = a

]
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Formalisation

Example: Maze (value)
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Formalisation

Bellman equation

The return Gt can be computed recursively:

Gt = rt+1 + γrt+2 + γ2rt+3 + . . .

= rt+1 + γ(rt+2 + γrt+3 + . . . )

= rt+1 + γGt+1

The value itself can be formulated recursively:

This idea can be used for computing the optimal value function v∗(s) (Bellman
equation)

v∗(s) = maxaE[rt+1 + γ ∗ v∗(st+1)|St = s,At = a]

Can be also defined for the state-action value function q∗(s, a)

q∗(s, a) = E[rt+1 + γ ∗maxa′q
∗(st+1, a

′)|St = s,At = a]
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Formalisation

Optimal policy

The policy function can be defined on top of the value function (or the state-action
value function)

Greedy policy: π∗(s) = argmaxaqπ(s, a)

Epsilon greedy policy: π∗(s) = argmaxaqπ(s, a) with probability 1− ϵ, otherwise a
random action is selected
How to compare policies??

A policy π is better than or equal to a policy π′ if its expected return is greater than or
equal to that of π′ for all states

The optimal policy is the one that maximizes the expected return

Formally, it can be expressed as:

π∗(s) = argmaxaq∗(s, a)

In RL, the policy is essential to explore the environment (exploration) while
maximizing the reward ((exploitation))
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Formalisation

Exploration vs Exploitation

Exploration: finds more information about the environment

Exploitation: exploits known information to maximize the reward

In order to find the optimal policy, the agent must explore the environment as well
as exploit the knowledge it has already acquired

This is the exploration-exploitation dilemma
The agent must find a good trade-off between exploration and exploitation (e.g.,
ϵ-greedy)
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Formalisation

Recap – modelling perspective

Encode your application as a RL problem
Identify the environment (i.e., the state space S of a given application)

Identify the action space A of a given application (decisions that affect the state)

Identify the task type

Identify the reward function r(s, a) (i.e., the goal of the application)

Find the optimal policy
Find the optimal policy π∗ that maximizes the expected return

The optimal policy can be found by solving the Bellman equations . . .
. . . but in practice it is not fleasible

The model is not known
Is computationally expensive
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Solving Reinforcement Learning problems Tabular methods

Optimal policy – model based approach

Simpliest approach: policy iteration (based on dynamic programming)
Given a policy π:

at each iteration, k + 1
For all states s ∈ S:
Evaluate the policy π (i.e., compute vπ(s) = E[rt+1 + γ ∗ t + 1 + ...|st = s])
Improve the policy π (i.e., compute π′(s) = greedy(vπ))

For each iteration, it is proven that the policy π′ is better than or equal to the
previous one
it needs to be repeated until convergence
This process always converges to the optimal policy (in Markov decisions processes)
Dynamic programming algorithms are based on this idea
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Solving Reinforcement Learning problems Tabular methods

Model free approach – families

Value based:
Compute the value function and then derive the optimal policy (Q-learning, SARSA,
DQN)

Policy based:
Compute directly the optimal policy (REINFORCE)

Actor critic:
Have both a value function and a policy (A3C, PPO)

Aguzzi (DISI, Univ. Bologna) Reinforcement Learning 26/07/2023 34 / 60



Solving Reinforcement Learning problems Tabular methods

Model-free approach – Monte carlo

True essence of reinforcement learning: trial and error
Simulated experience is used to solve the problem
Monte Carlo methods are based on averaging sample returns
How to guarantee that all states are visited?

Monte carlo with exploring start (ES)

Start an arbitrary π and q and repeat forever the following steps:
choose s0 and a0 such that all pairs have probability > 0
generate an episode following π (e.g., a simulation run)
for each pair st , at in the episode:

G ← return following the first occurence of st , at
q(st , at)← average(G , q(st , at))
π(st)← argmaxaq(st , a)

Monte carlo with without ES
stick to an initial state s0

but be sure that all states will eventually be visited

π should never give less than ϵ > 0 probability of being selected

e.g., can super-impose current π with a non-deterministic policy
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Solving Reinforcement Learning problems Tabular methods

Temporal difference (TD)

A combination of Monte Carlo ideas and dynamic programming ideas

Like Monte Carlo methods, TD methods can learn directly from raw experience
without a model of the environment’s dynamics
Like dynamic programming methods, TD methods update estimates based in part
on other learned estimates, without waiting for an outcome (they bootstrap)

bootstrap: the value of a state is updated based on the estimated value of the next
state

Example methods
Q-Learning: updates q using next state and ϵ− greedy policy for current q
(off-policy)

SARSA: updates q using next state and ϵ− greedy policy for next q (on-policy)

Q-learning
Generally considered a flexible, simple and effective method: typically the starting
point

Aguzzi (DISI, Univ. Bologna) Reinforcement Learning 26/07/2023 36 / 60



Solving Reinforcement Learning problems Tabular methods

Q-learning

Algorithm core: Q-update
q(st , at) = (1− α) ∗ q(st , at) + α[rt+1 + γ ∗maxa q(st+1, a)]

α is the learning rate (α ∈ [0, 1])

it is proven that this converges to the optimal q function (if α is sufficiently small
and all state-action pairs are visited infinitely often)

Full algorithm (episodic task)

initialize Q arbitrarily and put 0 on terminal states

for each episode:
initialize s0 (e.g., randomly) and t = 0

for each step t:
1 choose at from st using a policy from q (e.g., ϵ− greedy)
2 take the action at and observe rt , st+1 (interaction with the environment)
3 perform the update q(st , at) = (1− α) ∗ q(st , at) + α[rt+1 + γ ∗ maxa q(st+1, a)]
4 increase t
5 end if st+1 is terminal (or t > T )

Aguzzi (DISI, Univ. Bologna) Reinforcement Learning 26/07/2023 37 / 60



Solving Reinforcement Learning problems Tabular methods

Q-learning

Algorithm core: Q-update
q(st , at) = (1− α) ∗ q(st , at) + α[rt+1 + γ ∗maxa q(st+1, a)]

α is the learning rate (α ∈ [0, 1])

it is proven that this converges to the optimal q function (if α is sufficiently small
and all state-action pairs are visited infinitely often)

Full algorithm (episodic task)

initialize Q arbitrarily and put 0 on terminal states

for each episode:
initialize s0 (e.g., randomly) and t = 0

for each step t:
1 choose at from st using a policy from q (e.g., ϵ− greedy)
2 take the action at and observe rt , st+1 (interaction with the environment)
3 perform the update q(st , at) = (1− α) ∗ q(st , at) + α[rt+1 + γ ∗ maxa q(st+1, a)]
4 increase t
5 end if st+1 is terminal (or t > T )

Aguzzi (DISI, Univ. Bologna) Reinforcement Learning 26/07/2023 37 / 60



Solving Reinforcement Learning problems Tabular methods

Q-learning – pratical tips

Exploration-exploitation trade-off
ϵ− greedy policy is a simple way to balance exploration and exploitation

Typically, is better to start with a high ϵ and then decrease it over time

This is called ϵ-decay and can be done in different ways

Example (linear decay): ϵ = max(ϵmin, ϵmax − t
ϵdecay

)

Example (exponential decay): ϵ = ϵmin + (ϵmax − ϵmin) ∗ e−λ∗t

Learning rate
Learning rate α is typically set to a small value (e.g., 0.1)

However, it can be useful to decrease it over time

Motivation: the agent can learn faster in the beginning and then slow down the
learning rate

Example (linear decay): α = max(αmin, αmax − t
αdecay

)
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Solving Reinforcement Learning problems Tabular methods

Q-learning – Offline and online applications

Offline
create a simulation of the selected environment (e.g., a trading simulator)

simulates the agent-environment interaction learning the Q-function

in production uses the learned Q-function to take decisions
cons:

no adaptation to the real environment
The simulation must be a good approximation of the real environment

Online
learn the Q-function while interacting with the real environment

implement your agent and let it learn while taking decisions

pratical solution: initially learn fast and then slow down the learning rate
cons:

the agent can take bad decisions while learning (e.g., the robot can fall)
the agent can take a lot of time to learn
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Solving Reinforcement Learning problems Tabular methods

Q-learning – programming perspective

What is the best way to implement Q-learning? (or in general RL algorithms)
Separation of concerns:

Environment: the environment is a black box that can be interacted with (e.g., a
trading simulator)

Role: provide a clear interface to the agent in order to interact with the environment
Reference example: gymnasium: https://gymnasium.farama.org/

Policy: the policy is a function that maps states to actions
It could be a lookup table or a neural network
In the case of a neural network, there is a need of an autodifferentiation library
State-of-the-art libraries: PyTorch (https://pytorch.org/), Tensorflow
(https://www.tensorflow.org/), and TorchRL (https://github.com/pytorch/rl)

Learning algorithm: the learning algorithm is responsible for learning the policy
It could be a simple algorithm (e.g., Q-learning) or a complex one (e.g., DQN)
Some libraries provide a set of algorithms: Stable Baselines
(https://stable-baselines3.readthedocs.io/en/master/)

Hands-on at
https://github.com/cric96/intro-reinforcement-learning-python
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Solving Reinforcement Learning problems Approximate methods – Deep Reinforcement Learning

Reinforcement Learning Pitfalls: Large state space

Problem
State space  set of all possible states

State space explosion  the number of states is too large to be stored in memory

Example (Go) ®

10170 possible states (!!!!)
1080 atoms in the universe

1016 seconds since the Big Bang

Example (Chess) ®

1046 possible states

total space required ∼ 1035 terabytes

Question
How to deal with large state space?
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Solving Reinforcement Learning problems Approximate methods – Deep Reinforcement Learning

Reinforcement Learning Pitfalls: Continous Action Space

Problem
Action space  set of all possible actions

Continous action space  the actions are real numbers (e.g. [0, 1]) infinite
number of actions

Example (Robotics) ®

Action space  the set of all possible
joint angles

Continous action space  the set of all
possible real joint angles

Question
How to deal with continuous action space?
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Reinforcement Learning Pitfalls: Generalization

Problem
Generalization  the ability to perform well on previously unseen environments

Can be also seen as transfer learning  the ability to transfer knowledge from one
environment to another

Generalization gap  the difference between the performance in the training
environments and the performance in the test environments

Example (Go) ®

Generalization  the ability to play well with different opponents

Generalization gap  the difference between the performance on the training set
and the performance on the test set

Question
How to deal with generalization?
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Deep Reinforcement Learning

Overview
Deep Reinforcement Learning (DRL)  the use of deep neural networks to
approximate the value function/policy

Key features
value function approximation (instead of table)  handle large state space
policy gradient (instead of Q-Learning)  handle continous action space
deep neural networks  handle generalization (Representation learning)
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Deep Q-Learning

Q-Learning but q-function is approximated by a neural network

Q(s, a, θ) ∼ Q(s, a)
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Deep Q-Learning

Loss function
Bellman equation: Q(s, a) = (r + γmaxa′ Q(s ′, a′))

Treating r + γmaxa′ Q(s ′, a′) as a target value

Regression problem: L(θ) = (r + γmaxa′ Q(s ′, a′, θ)− Q(s, a, θ))2

Issues
Correlation  the samples are not independent

Non-stationary  the target value changes over time

Solutions
Replay Buffer  store the transitions (s, a, r , s ′) and sample them randomly

Target Network  used to compute the target value
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Deep Q Learning: Replay Buffer

How
Store the transitions (s, a, r , s ′) in D of prior experience

During Backpropagation, sample a batch of transitions (s, a, r , s ′)

Loss computation

Sample a random batch of transitions (s, a, r , s ′) from D
Compute the target value y = r + γmaxa′ Q(s ′, a′, θ)

Use the target value to compute the loss L(θ) = E[(y − Q(s, a, θ))2]
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Deep Q Learning: Fixed Target Network

How
Use a separate network to compute the target value

The target network is updated every C step

Loss computation

Let θ− be the parameters of the target network

Sample a random batch of transitions (s, a, r , s ′) from D
Compute the target value y = r + γmaxa′ Q(s ′, a′, θ−)

Use the target value to compute the loss L(θ) = E[(y − Q(s, a, θ))2]

After C steps, update the target network parameters θ− ← θ

Benefits
Stable  the target value is fixed for C steps, avoiding the non-stationary issue
(dipendece on target and prediction cause)
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Deep Q Learning: Epsilon decay

How
ϵ is the probability of selecting a random action

ϵ is decayed over time (or steps or episodes)

(!!!) Off-policy nature of DQL  the agent can learn from random actions

Why
Exploration vs Exploitation  the agent needs to explore the environment to learn
the optimal policy

Exploitation  the agent needs to exploit the learned policy to maximize the reward
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Deep Q Learning: Algorithm

Algorithm
Initialize the replay buffer D
Initialize the target network parameters θ−

Initialize the Q-network parameters θ

for episode = 1, M do
Initialize the initial state s1
for t = 1, T do

With probability ϵ select a random action at
otherwise select at = argmaxaQ(st , a, θ)
Execute action at in the environment and observe reward rt and next state st+1
Store transition (st , at , rt , st+1) in D
Sample a random minibatch of transitions (s, a, r , s′) from D
Set yi = r + γ maxa′ Q(s′, a′, θ−)
Perform a gradient descent step on (yi − Q(s, a, θ))2 with respect to the network
parameters θ
Every C steps reset θ− ← θ
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Deep Q Learning: Extensions and Limits

Limits
Works only for discrete action spaces

Sample inefficiencient

Overestimation of the action value due to the max operator

Extensions
Double DQN  use two separate networks to select and evaluate the action

Pro: avoid overestimation of the action value
Prioritized Experience Replay  sample the transitions from the replay buffer
according to their TD-error

Pro: better exploration of the state space

Raindow DQN  combination of the previous extensions
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Policy gradient methods – REINFORCE

Policy gradient  the policy is directly optimized
Pro: can handle continous action space
Pro: can learn stochastic policies
Pro: sometimes policies are easier to learn than value functions

REINFORCE is an policy gradient algorithm for maximizing the expected return
G =

∑T
t=0 γ

trt

intuition: trial and error
Sample a trajectory τ from the policy π(θ). If the trajectory is good, increase the
probability of the actions. Otherwise, decrease the probability of the actions
It can be seen as stochasti gradient ascent on G(HT )

we want to train the policy in a way theta:

θn+1 = θn + α∇J(θn)

where J(θ) = Eπ(θ)[G ]
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Policy gradient methods – REINFORCE (cont.)

The gradient can be estimated using the sample return Gt (came from the policy
theorem):

θn+1 = θn + α∇logπ(a|s)Gt

The sample return Gt can be only computed at the end of the episode

Therefore, this is a episodic algorithm with Monte Carlo updates

REINFORCE
Initialize the policy parameters θ

for episode = 1, M do
Generate an episode following π(θ): s1, a1, r1, ..., sT , aT , rT
G = 0
for t = 1,T do

G ← rt + γ ∗ G
θ ← θ + α∇logπ(at |st)G
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REINFORCE – Extension and Limitations

Limitations
High variance  the gradient is computed using the sample return Gt

Sample inefficiency  the policy is updated only at the end of the episode

Extension
Actor-critic  use a critic to estimate the value function

Pro: reduce the variance of the gradient
Pro: reduce the sample inefficiency
Cons: you need to train two networks (one for the actor and one for the critic)

Proximal Policy Optimization  use a surrogate objective function to avoid too
large policy updates
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Open problems I

Reinforcement Learning is a powerful tool to solve sequential decision-making
problems . . .

. . . but still there are some open-problems

Transfer Learning
Problem: the agent needs to learn a new task from scratch

Solution: transfer knowledge from a previous task

Unfortunately, it is not easy to transfer knowledge from one task to another

Open problem: how to transfer knowledge from one task to another?

Sample efficency
Problem: the agent needs a lot of samples to learn a good policy

The human brain can learn a new task with few samples, why RL agents cannot?

Open problem: how to explore the environment efficiently?

Ideas: curiosity, intrinsic motivation, long-time versus short-time learning learning
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Open problems II

Safe exploration
Problem: the agent needs to explore the environment to learn a good policy without
taking bad decisions

Open problem: how to explore the environment safely?

Multi-agent RL
Problem: the agent needs to learn in a multi-agent environment

Open problem: how to learn in a multi-agent environment?

Some issues are: credit assignment, non-stationarity, exploration

No foundational theory for multi-agent RL (even worst for many agents)

Continous adaptation
Problem: the agent needs to adapt to a changing environment

Open problem: how to adapt to a changing environment?

Ideas: meta-learning, continual learning, online learning
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Conclusion

Reinforcement Learning is a tool really used in practice
AlphaGo  DeepMind (2016)
ChatGPT  OpenAI (2023)

In this lecture we have seen:
Simple formulation of the RL problem
Tabular methods (e.g., Q-learning)
Approximate methods (e.g., DQL)
Policy gradient methods (e.g., REINFORCE)
hands-on with gymnasium and PyTorch

This is only the tip of the iceberg
Actor-Critic methods  A3C, A2C, PPO
Multi-agent RL  MADDPG, QMIX, MAPPO
Hierarchical RL  Healthcare
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