Reinforcement Learning Unlocking the Power of AI Agents

Gianluca Aguzzi gianluca.aguzzi@unibo.it

Dipartimento di Informatica – Scienza e Ingegneria (DISI) Alma Mater Studiorum – Università di Bologna

Talk @ Advanced School in Artificial Intelligence (ASAI)

26/07/2023

0 🖹 in 🛛

- PhD student in Computer Science and Engineering
- Research interests:
 - Multi-agent systems
 - Distributed Collective Intellingence
 - Deep Reinforcement Learning
 - Multi-agent Reinforcement Learning

- An Introduction to Reinforcement Learning, Sutton and Barto, 1998
 - Available online at http://incompleteideas.net/book/the-book-2nd.html
- Foundations of Deep Reinforcement Learning: Theory and Practice in Python, Laura Graesser and Wah Loon Keng, 2020
- Deep Mind Lectures:
 - Introduction to Reinforcement Learning with David Silver: https://www.deepmind.com/learning-resources/ introduction-to-reinforcement-learning-with-david-silver
 - Reinforcement Learning Lecture Series: https://www.deepmind.com/ learning-resources/reinforcement-learning-lecture-series-2021

Contents

Introduction

- Tabular methods
- Approximate methods Deep Reinforcement Learning

4 Conclusion and open problems

What is Reinforcement Learning?

What is Reinforcement Learning? It is related with the concept of **intelligence**

What is Intelligence?

What is Intelligence?

[..] otherwise called "good sense", "practical sense", "initiative", the faculty of adapting one's self to circumstances

What is Intelligence?

Goal-directed adaptive behavior

What is Intelligence? *learning* to make *decisions* to achive *goals*

What is Reinforcement Learning?

• Animals learn by interacting with our environment

- · Babies learn how to communicate by interacting with parents
- Dogs learn how to behave by following the owner's orders
- Me learn how to surfing by falling from the surfboard
- Difference from supervised learning:
 - active learning (learn by doing)
 - sequential interaction
 - delayed feedback
- Learning guided by goal (goal-directed)
- Learning without examples \Rightarrow guided by reward signal

Interaction loop

An agent interacts with the environment by perceive an observation and take an action accordingly which leads to a reward

Reinforcement Learning

On problem expressiveness: reward hypothesis

Reward hypothesis

Any goal can be formalized as the outcome of maximizing a cumulative reward^a

- Reinforcement learning is based on this hypothesis
- Ideally, we can formalize any problem as a reinforcement learning problem

^ahttp://incompleteideas.net/rlai.cs.ualberta.ca/RLAI/rewardhypothesis.html

Stronger statement: reward is enough

intelligence, and its associated abilities, can be understood as subserving the maximisation of reward by an agent acting in its environment. ^a

Really controversial

^aDavid Silver et al. "Reward is enough". In: *Artificial Intelligence* 299 (Oct. 2021), p. 103535. doi: 10.1016/j.artint.2021.103535. url: https://doi.org/10.1016/j.artint.2021.103535

Examples of Reinforcement Learning problems

- Learning how to surf
- Managing a portfolio of cryptocurrencies
- Controlling the battery of an electric car
- Playing chessboard
- Solving a cubic cube

- Reward: surfing time on the wave
- Reward: money earned
- Reward: battery level at the end of the day
- Reward: win the game
- Reward: solving time

NB! if the goal is learn via environment interaction, then these are all reinforcement learning problems, regardless the algorithm involved

Again, What is Reinforcement Learning

- There are several reasons why we should learn:
 - Find solutions
 - A robot that reaches a target
 - A program that plays chess (really well)
 - Adapt online (dealing with unknowns)
 - A robot that learns how to walk in a new environment
 - A program that learns how to play a new game
- Reinforcement learning is used in both cases
- Episodic vs continuing tasks
- Adapting online is more challenging, and it is not just generalization (e.g. supervised learning)
- Is it planning? → No, the *model* is not known

Motivating real world examples

Robotics, Games, Finance, Healthcare, ...

ChatGPT ¹

Step 1

Collect demonstration data and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3.5 with supervised learning.

We give treats and punishments to teach...

Step 2

Collect comparison data and train a reward model.

A prompt and several model outputs are sampled. Explain reinforcement learning to a 6 year old.

In machine learning_

This data is used to train our reward model.

A labeler ranks the

outputs from best

Step 3 Optin

Optimize a policy against the reward model using the PPO reinforcement learning algorithm.

A new prompt is sampled from the dataset.

The PPO model is

initialized from the

supervised policy.

Write a story about otters.

Once upon a time...

 r_{ν}

The policy generates an output.

The reward model calculates a reward for the output.

The reward is used to update the policy using PPO.

nai com/blog/chatgat

¹https://openai.com/blog/chatgpt

Aguzzi (DISI, Univ. Bologna)

Reinforcement Learning

26/07/2023

13/60

Introduction

Learning Plasma Control for Fusion Science²

Contents

Pormalisation

- - Tabular methods
 - Approximate methods Deep Reinforcement Learning

Reinforcement Learning: core concept

Reinforcement learning formalism includes:

- Environment:
 - Typically stochastic and unknow but stationary (Markov Decision Process)
 - Environment dynamics (i.e., the model) expressed as: p(s', r|s, a) → not known by the agent
- Reward signal
 - Identifies what is good in the environment (the goal)
- Agent, which contain:
 - State
 - Policy
 - Value function estimation?

Environment: Stochasticity

- The environment is **stochastic** if the next state is *not* fully determined by the current state and action
- But the environment is **stationary** if the probability distribution of the next state is the same for all time steps

Agent and environment

- Each time step t:
 - The agent receives an observation $s_t \in \mathcal{S}$ (and a reward $r_t \in \mathbb{R}$)
 - Executes an action $a_t \in \mathcal{A}$
- The environment
 - Receives the action at
 - Emits the observation s_{t+1} and the reward r_{t+1}
- The agent-environment interaction can be (i.e., the task):
 - Episodic: the agent-environment interaction breaks down into episodes (e.g., chess)
 - A sequence of actions that terminates in a terminal state
 - Continuing: the agent-environment interaction continues without limit (e.g., robot)

Agent state

- A full episode is a sequence of state-action-reward tuples (called trajectory)
- Example: $\mathcal{H}_T = \{(s_0, a_0, r_1), (s_1, a_1, r_2), \dots, (s_{T-1}, a_{T-1}, r_T)\}$
- Markovian property: the future is independent of the past given the present
 - Formula: $p(s_{t+1}|s_t, a_t) = p(s_{t+1}|\mathcal{H}_t, a_t)$
 - NBI: this means that the state s_t is a sufficient statistic of the future
- The environment state can be either:
 - Fully observable: the agent knows the full environment state
 - Partially observable: the agent partially observes environment state
- Today we will assume that the state is fully observable and Markovian
- Real case scenario: partially observable and non-Markovian
 - Also in that situation, reinforcement learning algorithms can be used (particularly the ones based on *deep learning*)

Example: Maze

- Action: move in one of the four directions (up, down, left, right)
- State: ???
- Reward: ???
- Policy: ???

Example: Maze

- Action: move in one of the four directions (up, down, left, right)
- State: position in the maze
- Reward: ???
- Policy: ???

Rewards

- A reward r_t is a scalar feedback signal
 - In chess, $r_t = 1$ if the agent wins, $r_t = 0$ otherwise
 - In a robot, $r_t = 1$ if the robot reaches the target, $r_t = 0$ otherwise
 - For a portfolio, rt is the profit
- Describes how well the agent is doing at step t (define the goal)
- The agent's sole objective is to maximize the discounted cumulative reward (return)

$$G_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots$$
$$= \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}$$

Why discounted?

- Immediate rewards can be more important than future rewards
- $\gamma \in [0,1]$ is the discount factor
- $\gamma = 0 \Rightarrow$ myopic agent
- $\gamma = 1$ **>** far-sighted agent

Example: Maze

- Action: move in one of the four directions (up, down, left, right)
- State: position in the maze
- Reward:
 - $r_t = -1$ for each step, $r_t = 0$ if the agent reaches the target
 - $r_t = 1$ if the agent reaches the target, $r_t = 0$ otherwise
- Policy: ???

Agent Policy

- $\bullet\,$ The agent's behaviour is determined by a policy $\pi\,$
- A policy is a mapping from state to action
- An action is something that affects the state
 - the action can be either:
 - Discrete: $\mathcal{A} = \{a_1, a_2, \dots, a_n\}$ (e.g., chess)
 - Continuous: $\mathcal{A} = \mathbb{R}^n$ (e.g., the torque applied to each joint of a robot)
- The policy can be either:
 - **Deterministic**: $\pi : S \to A$
 - Stochastic: $\pi : S \times A \rightarrow [0, 1]$
- The policy is typically represented as a lookup table or a neural network
- The policy can be based on an estimation of the value function

Example: Maze

- Action: move in one of the four directions (up, down, left, right)
- State: position in the maze
- Reward:

• $r_t = -1$ for each step, $r_t = 0$ if the agent reaches the target

- $r_t = 1$ if the agent reaches the target, $r_t = 0$ otherwise
- Policy:
 - shortest path to the target
 - random walk

Value function

- The value function $v_{\pi}(s)$ gives the **long-term value** of state s under policy π
- The value of a state is the total amount of reward an agent can expect to accumulate over the future, starting from that state
- Formally, it can be expressed as:

$$u_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s] = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k r_{t+k+1}|S_t = s
ight]$$

- the state-action value function $q_{\pi}(s, a)$ gives the long-term value of state-action pair (s, a) under policy π
 - Formally, it can be expressed as:

$$q_{\pi}(s,a) = \mathbb{E}_{\pi}[G_t|S_t = s, A_t = a] = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1}|S_t = s, A_t = a\right]$$

Example: Maze (value)

		-14	-13	-12	-11	-10	-9		
Start	-16	-15			-12		-8		
		-16	-17			-6	-7		
			-18	-19		-5			
		-24		-20		-4	-3		
		-23	-22	-21	-22		-2	-1	Goal
									TATZ
	_	_	_	_	_	_	_	_	2

Aguzzi (DISI, Univ. Bologna)

Reinforcement Learning

26/07/2023

26 / 60

Bellman equation

• The return G_t can be computed recursively:

$$G_{t} = r_{t+1} + \gamma r_{t+2} + \gamma^{2} r_{t+3} + \dots$$

= $r_{t+1} + \gamma (r_{t+2} + \gamma r_{t+3} + \dots)$
= $r_{t+1} + \gamma G_{t+1}$

- The value itself can be formulated recursively:
- This idea can be used for computing the optimal value function $v_*(s)$ (Bellman equation)

$$v^*(s) = \max_{a} \mathbb{E}[r_{t+1} + \gamma * v_*(s_{t+1}) | S_t = s, A_t = a]$$

• Can be also defined for the state-action value function $q^*(s, a)$

$$q^*(s, a) = \mathbb{E}[r_{t+1} + \gamma * max_{a'}q^*(s_{t+1}, a')|S_t = s, A_t = a]$$

Optimal policy

- The policy function can be defined on top of the value function (or the state-action value function)
- Greedy policy: $\pi_*(s) = argmax_aq_{\pi}(s, a)$
- Epsilon greedy policy: $\pi_*(s) = argmax_a q_{\pi}(s, a)$ with probability 1ϵ , otherwise a random action is selected
- How to compare policies??
 - A policy π is better than or equal to a policy π' if its expected return is greater than or equal to that of π' for all states
- The optimal policy is the one that maximizes the expected return
- Formally, it can be expressed as:

$$\pi_*(s) = \operatorname{argmax}_a q_*(s, a)$$

 In RL, the policy is essential to explore the environment (*exploration*) while maximizing the reward ((exploitation))

Exploration vs Exploitation

- Exploration: finds more information about the environment
- Exploitation: exploits known information to maximize the reward
- In order to find the optimal policy, the agent must explore the environment as well as exploit the knowledge it has already acquired
- This is the exploration-exploitation dilemma
- The agent must find a good trade-off between exploration and exploitation (e.g., ϵ -greedy)

Recap - modelling perspective

Encode your application as a RL problem

- Identify the environment (i.e., the state space \mathcal{S} of a given application)
- Identify the action space \mathcal{A} of a given application (decisions that affect the state)
- Identify the task type
- Identify the reward function r(s, a) (i.e., the goal of the application)

Recap - modelling perspective

Encode your application as a RL problem

- Identify the environment (i.e., the state space S of a given application)
- Identify the action space \mathcal{A} of a given application (decisions that affect the state)
- Identify the task type
- Identify the reward function r(s, a) (i.e., the goal of the application)

Find the optimal policy

- Find the optimal policy π_* that maximizes the expected return
- The optimal policy can be found by solving the Bellman equations ...
- ... but in practice it is not fleasible
 - The model is not known
 - Is computationally expensive

Contents

Solving Reinforcement Learning problems

- Tabular methods
- Approximate methods Deep Reinforcement Learning

Contents

- Solving Reinforcement Learning problems • Tabular methods
 - Approximate methods Deep Reinforcement Learning

4 Conclusion and open problems

Optimal policy - model based approach

- Simpliest approach: policy iteration (based on dynamic programming)
- Given a policy π :
 - at each iteration, k+1
 - For all states $s \in S$:
 - Evaluate the policy π (i.e., compute $v_{\pi}(s) = \mathbb{E}[r_{t+1} + \gamma * t + 1 + ... | s_t = s])$
 - Improve the policy π (i.e., compute $\pi'(s) = greedy(v_{\pi})$)
- $\bullet\,$ For each iteration, it is proven that the policy π' is better than or equal to the previous one
- it needs to be repeated until convergence
- This process always converges to the optimal policy (in Markov decisions processes)
- Dynamic programming algorithms are based on this idea

Tabular methods

Model free approach - families

- Value based:
 - Compute the value function and then derive the optimal policy (Q-learning, SARSA, DQN)
- Policy based:
 - Compute directly the optimal policy (REINFORCE)
- Actor critic:
 - Have both a value function and a policy (A3C, PPO)

Model-free approach – Monte carlo

- True essence of reinforcement learning: trial and error
- Simulated experience is used to solve the problem
- Monte Carlo methods are based on averaging sample returns
- How to guarantee that all states are visited?

Monte carlo with exploring start (ES)

- Start an arbitrary π and q and repeat forever the following steps:
 - choose s_0 and a_0 such that all pairs have probability > 0
 - generate an episode following π (e.g., a simulation run)
 - for each pair s_t, a_t in the episode:
 - $G \leftarrow$ return following the first occurence of s_t, a_t
 - $q(s_t, a_t) \leftarrow average(G, q(s_t, a_t))$
 - $\pi(s_t) \leftarrow \operatorname{argmax}_a q(s_t, a)$

Model-free approach – Monte carlo

- True essence of reinforcement learning: trial and error
- Simulated experience is used to solve the problem
- Monte Carlo methods are based on averaging sample returns
- How to guarantee that all states are visited?

Monte carlo with exploring start (ES)

- Start an arbitrary π and q and repeat forever the following steps:
 - choose s_0 and a_0 such that all pairs have probability > 0
 - generate an episode following π (e.g., a simulation run)
 - for each pair s_t, a_t in the episode:
 - $G \leftarrow$ return following the first occurence of s_t, a_t
 - $q(s_t, a_t) \leftarrow average(G, q(s_t, a_t))$
 - $\pi(s_t) \leftarrow \operatorname{argmax}_a q(s_t, a)$

Monte carlo with without ES

- stick to an initial state s_0
- but be sure that all states will eventually be visited
- π should never give less than $\epsilon > {\rm 0}$ probability of being selected
- $\bullet\,$ e.g., can super-impose current π with a non-deterministic policy

Temporal difference (TD)

- A combination of Monte Carlo ideas and dynamic programming ideas
- Like Monte Carlo methods, TD methods can learn directly from raw experience without a model of the environment's dynamics
- Like dynamic programming methods, TD methods update estimates based in part on other learned estimates, without waiting for an outcome (they *bootstrap*)
 - bootstrap: the value of a state is updated based on the estimated value of the next state

Example methods

- Q-Learning: updates q using next state and ϵ greedy policy for current q (off-policy)
- SARSA: updates q using next state and ϵ greedy policy for next q (on-policy)

Q-learning

• Generally considered a flexible, simple and effective method: typically the starting point

Q-learning

Algorithm core: Q-update

- $q(s_t, a_t) = (1 \alpha) * q(s_t, a_t) + \alpha [r_{t+1} + \gamma * max_a q(s_{t+1}, a)]$
- α is the *learning rate* ($\alpha \in [0, 1]$)
- it is proven that this converges to the optimal q function (if α is sufficiently small and all state-action pairs are visited infinitely often)

Q-learning

Algorithm core: Q-update

- $q(s_t, a_t) = (1 \alpha) * q(s_t, a_t) + \alpha [r_{t+1} + \gamma * max_a q(s_{t+1}, a)]$
- α is the *learning rate* ($\alpha \in [0, 1]$)
- it is proven that this converges to the optimal q function (if α is sufficiently small and all state-action pairs are visited infinitely often)

Full algorithm (episodic task)

- $\bullet\,$ initialize Q arbitrarily and put 0 on terminal states
- for each episode:
- initialize s_0 (e.g., randomly) and t = 0
 - for each step t:
 - **(**) choose a_t from s_t using a policy from q (e.g., ϵ greedy)
 - **2** take the action a_t and observe r_t , s_{t+1} (interaction with the environment)
 - $ext{perform the update } q(s_t, a_t) = (1 \alpha) * q(s_t, a_t) + \alpha [r_{t+1} + \gamma * max_a q(s_{t+1}, a)]$
 - increase t
 - **(a)** end if s_{t+1} is terminal (or t > T)

Q-learning – pratical tips

Exploration-exploitation trade-off

- $\bullet \ \epsilon-{\it greedy}$ policy is a simple way to balance exploration and exploitation
- $\bullet\,$ Typically, is better to start with a high ϵ and then decrease it over time
- This is called ϵ -decay and can be done in different ways
- Example (linear decay): $\epsilon = max(\epsilon_{min}, \epsilon_{max} \frac{t}{\epsilon_{decay}})$
- Example (exponential decay): $\epsilon = \epsilon_{min} + (\epsilon_{max} \epsilon_{min}) * e^{-\lambda * t}$

Q-learning – pratical tips

Exploration-exploitation trade-off

- $\bullet \ \epsilon-{\it greedy}$ policy is a simple way to balance exploration and exploitation
- $\bullet\,$ Typically, is better to start with a high ϵ and then decrease it over time
- This is called ϵ -decay and can be done in different ways
- Example (linear decay): $\epsilon = max(\epsilon_{min}, \epsilon_{max} \frac{t}{\epsilon_{decay}})$
- Example (exponential decay): $\epsilon = \epsilon_{min} + (\epsilon_{max} \epsilon_{min}) * e^{-\lambda * t}$

Learning rate

- Learning rate α is typically set to a small value (e.g., 0.1)
- However, it can be useful to decrease it over time
- Motivation: the agent can learn faster in the beginning and then slow down the learning rate
- Example (linear decay): $\alpha = max(\alpha_{min}, \alpha_{max} \frac{t}{\alpha_{decay}})$

Tabular methods

Q-learning – Offline and online applications

Offline

- create a simulation of the selected environment (e.g., a trading simulator)
- simulates the agent-environment interaction learning the Q-function
- in production uses the learned Q-function to take decisions

ons:

- no adaptation to the real environment
- The simulation must be a good approximation of the real environment

Q-learning – Offline and online applications

Offline

- create a simulation of the selected environment (e.g., a trading simulator)
- simulates the agent-environment interaction learning the Q-function
- in production uses the learned Q-function to take decisions

ons:

- no adaptation to the real environment
- The simulation must be a good approximation of the real environment

Online

- learn the Q-function while interacting with the real environment
- implement your agent and let it learn while taking decisions
- pratical solution: initially learn fast and then slow down the learning rate
- cons:
 - the agent can take bad decisions while learning (e.g., the robot can fall)
 - the agent can take a lot of time to learn

Q-learning – programming perspective

- What is the best way to implement Q-learning? (or in general RL algorithms)
- Separation of concerns:
 - Environment: the environment is a black box that can be interacted with (e.g., a trading simulator)
 - Role: provide a clear interface to the agent in order to interact with the environment
 - Reference example: gymnasium: https://gymnasium.farama.org/
 - Policy: the policy is a function that maps states to actions
 - It could be a lookup table or a neural network
 - In the case of a neural network, there is a need of an autodifferentiation library
 - State-of-the-art libraries: PyTorch (https://pytorch.org/), Tensorflow (https://www.tensorflow.org/), and TorchRL (https://github.com/pytorch/rl)
 - Learning algorithm: the learning algorithm is responsible for learning the policy
 - It could be a simple algorithm (e.g., Q-learning) or a complex one (e.g., DQN)
 - Some libraries provide a set of algorithms: Stable Baselines (https://stable-baselines3.readthedocs.io/en/master/)

Hands-on at

https://github.com/cric96/intro-reinforcement-learning-python

Contents

- Solving Reinforcement Learning problems Tabular methods
 - Approximate methods Deep Reinforcement Learning

Reinforcement Learning Pitfalls: Large state space

Problem

- State space > set of all possible states
- State space explosion \rightarrow the number of states is too large to be stored in memory

Example (Go) 🗞 • 10¹⁷⁰ possible states (!!!!) • 10⁸⁰ atoms in the universe • 10¹⁶ seconds since the Big Bang Example (Chess) 🗞 • 10⁴⁶ possible states

• total space required $\sim 10^{35}$ terabytes

Question

How to deal with large state space?

Aguzzi (DISI, Univ. Bologna)

Reinforcement Learning

26/07/2023

Reinforcement Learning Pitfalls: Continous Action Space

Reinforcement Learning Pitfalls: Generalization

Problem

- Generalization + the ability to perform well on previously unseen environments
- Can be also seen as transfer learning > the ability to transfer knowledge from one environment to another
- Generalization gap \rightarrow the difference between the performance in the training environments and the performance in the test environments

*Q*o Example (Go)

- Generalization **>** the ability to play well with different opponents
- Generalization gap \rightarrow the difference between the performance on the training set and the performance on the test set

Question

How to deal with generalization?

Aguzzi (DISI, Univ. Bologna)

Deep Reinforcement Learning

Overview

• Deep Reinforcement Learning (DRL) → the use of deep neural networks to approximate the value function/policy

Key features

- value function approximation (instead of table) > handle large state space
- policy gradient (instead of Q-Learning) → handle continous action space
- deep neural networks **>** handle generalization (Representation learning)

Deep Q-Learning

Q-Learning but q-function is approximated by a neural network

 $Q(s, a, \theta) \sim Q(s, a)$

Deep Q-Learning

Loss function

- Bellman equation: $Q(s, a) = (r + \gamma \max_{a'} Q(s', a'))$
- Treating $r + \gamma \max_{a'} Q(s', a')$ as a target value
- Regression problem: $L(\theta) = (r + \gamma \max_{a'} Q(s', a', \theta) Q(s, a, \theta))^2$

Issues

- Correlation > the samples are not independent
- Non-stationary → the target value changes over time

Solutions

- **Replay Buffer** \rightarrow store the transitions (s, a, r, s') and sample them randomly
- Target Network > used to compute the target value

Deep Q Learning: Replay Buffer

How

- Store the transitions (s, a, r, s') in \mathcal{D} of prior experience
- During Backpropagation, sample a batch of transitions (s, a, r, s')

Loss computation

- Sample a random batch of transitions (s, a, r, s') from ${\cal D}$
- Compute the target value $y = r + \gamma \max_{a'} Q(s', a', \theta)$
- Use the target value to compute the loss $L(\theta) = \mathbb{E}[(y Q(s, a, \theta))^2]$

Deep Q Learning: Fixed Target Network

How

- Use a separate network to compute the target value
- The target network is updated every C step

Loss computation

- $\bullet~{\rm Let}~\theta^-$ be the parameters of the target network
- Sample a random batch of transitions (s, a, r, s') from \mathcal{D}
- Compute the target value $y = r + \gamma \max_{a'} Q(s', a', \theta^-)$
- Use the target value to compute the loss $L(\theta) = \mathbb{E}[(y Q(s, a, \theta))^2]$
- After *C* steps, update the target network parameters $\theta^- \leftarrow \theta$

Benefits

• **Stable** → the target value is fixed for *C* steps, avoiding the non-stationary issue (dipendece on target and prediction cause)

Deep Q Learning: Epsilon decay

How

- ϵ is the probability of selecting a random action
- ϵ is decayed over time (or steps or episodes)
- (!!!) Off-policy nature of DQL → the agent can learn from random actions

Why

- Exploration vs Exploitation > the agent needs to explore the environment to learn the optimal policy
- Exploitation \Rightarrow the agent needs to exploit the learned policy to maximize the reward

Deep Q Learning: Algorithm

Algorithm

- $\bullet\,$ Initialize the replay buffer ${\cal D}\,$
- Initialize the target network parameters θ^-
- Initialize the Q-network parameters θ
- for episode = 1, M do
 - Initialize the initial state s1
 - for t = 1, T do
 - With probability ϵ select a random action a_t
 - otherwise select $a_t = argmax_aQ(s_t, a, \theta)$
 - Execute action a_t in the environment and observe reward r_t and next state s_{t+1}
 - Store transition (s_t, a_t, r_t, s_{t+1}) in \mathcal{D}
 - Sample a random minibatch of transitions (s, a, r, s') from \mathcal{D}
 - Set y_i = r + γ max_{a'} Q(s', a', θ⁻)
 - Perform a gradient descent step on $(y_i Q(s, a, \theta))^2$ with respect to the network parameters θ
 - Every C steps reset $\theta^- \leftarrow \theta$

Deep Q Learning: Extensions and Limits

Limits

- Works only for discrete action spaces
- Sample inefficiencient
- Overestimation of the action value due to the max operator

Extensions

- Double DQN > use two separate networks to select and evaluate the action
 - Pro: avoid overestimation of the action value
- Prioritized Experience Replay → sample the transitions from the replay buffer according to their TD-error
 - Pro: better exploration of the state space
- Raindow DQN → combination of the previous extensions

Policy gradient methods - REINFORCE

Policy gradient → the policy is directly optimized

- Pro: can handle continous action space
- Pro: can learn stochastic policies
- Pro: sometimes policies are easier to learn than value functions

• **REINFORCE** is an policy gradient algorithm for maximizing the expected return $G = \sum_{t=0}^{T} \gamma^t r_t$

- intuition: trial and error
 - Sample a trajectory τ from the policy $\pi(\theta)$. If the trajectory is good, increase the probability of the actions. Otherwise, decrease the probability of the actions
 - It can be seen as stochasti gradient ascent on $G(H_T)$
- we want to train the policy in a way theta:

$$\theta_{n+1} = \theta_n + \alpha \nabla J(\theta_n)$$

• where $J(\theta) = \mathbb{E}_{\pi(\theta)}[G]$

Policy gradient methods - REINFORCE (cont.)

• The gradient can be estimated using the sample return G_t (came from the policy theorem):

$$\theta_{n+1} = \theta_n + \alpha \nabla \log \pi(a|s) G_t$$

- The sample return G_t can be only computed at the end of the episode
- Therefore, this is a *episodic* algorithm with Monte Carlo updates

REINFORCE

- $\bullet\,$ Initialize the policy parameters $\theta\,$
- for episode = 1, M do
 - Generate an episode following $\pi(\theta)$: $s_1, a_1, r_1, ..., s_T, a_T, r_T$
 - G = 0

for
$$t = 1, T$$
 do

•
$$G \leftarrow r_t + \gamma * G$$

•
$$\theta \leftarrow \theta + \alpha \nabla \log \pi(a_t | s_t) G$$

REINFORCE – Extension and Limitations

Limitations

- High variance \rightarrow the gradient is computed using the sample return G_t
- Sample inefficiency \Rightarrow the policy is updated only at the end of the episode

Extension

- Actor-critic > use a critic to estimate the value function
 - Pro: reduce the variance of the gradient
 - Pro: reduce the sample inefficiency
 - Cons: you need to train two networks (one for the actor and one for the critic)

Proximal Policy Optimization → use a surrogate objective function to avoid too large policy updates

Contents

- Tabular methods
- Approximate methods Deep Reinforcement Learning

Conclusion and open problems

Open problems I

- Reinforcement Learning is a powerful tool to solve sequential decision-making problems . . .
- ... but still there are some open-problems

Transfer Learning

- Problem: the agent needs to learn a new task from scratch
- Solution: transfer knowledge from a previous task
- Unfortunately, it is not easy to transfer knowledge from one task to another
- Open problem: how to transfer knowledge from one task to another?

Sample efficency

- Problem: the agent needs a lot of samples to learn a good policy
- The human brain can learn a new task with few samples, why RL agents cannot?
- Open problem: how to explore the environment efficiently?
- Ideas: curiosity, intrinsic motivation, long-time versus short-time learning learning

Open problems II

Safe exploration

- **Problem**: the agent needs to explore the environment to learn a good policy without taking bad decisions
- Open problem: how to explore the environment safely?

Multi-agent RL

- Problem: the agent needs to learn in a multi-agent environment
- Open problem: how to learn in a multi-agent environment?
- Some issues are: credit assignment, non-stationarity, exploration
- No foundational theory for multi-agent RL (even worst for many agents)

Continous adaptation

- Problem: the agent needs to adapt to a changing environment
- Open problem: how to adapt to a changing environment?
- Ideas: meta-learning, continual learning, online learning

Conclusion

- Reinforcement Learning is a tool really used in practice
 - AlphaGo → DeepMind (2016)
 - ChatGPT → OpenAl (2023)
- In this lecture we have seen:
 - Simple formulation of the RL problem
 - Tabular methods (e.g., Q-learning)
 - Approximate methods (e.g., DQL)
 - Policy gradient methods (e.g., REINFORCE)
 - hands-on with gymnasium and PyTorch
- This is only the tip of the iceberg
 - Actor-Critic methods → A3C, A2C, PPO
 - Multi-agent RL → MADDPG, QMIX, MAPPO
 - Hierarchical RL → Healthcare

Reinforcement Learning Unlocking the Power of AI Agents

Gianluca Aguzzi gianluca.aguzzi@unibo.it

Dipartimento di Informatica – Scienza e Ingegneria (DISI) Alma Mater Studiorum – Università di Bologna

Talk @ Advanced School in Artificial Intelligence (ASAI)

26/07/2023

